

2001 Annual Forum

at Misty Hills, Muldersdrift

The Level And Variation Of Tariff Rates: An Analysis Of Nominal And Effective Tariff Rates In South Africa For The Years 2000 And 2001

Dirk Ernst van Seventer
TIPS


```
    RATES IN SOUIH AFRICA FOR\mathcal{THE YEARS 2000 ANND 2001'}
```

Dirk Ernst van Seventer, TIPS

Abstract

This note presents a first cut at analysing the tariff schedule that is applied to South $\mathcal{A f r i c}$ an imports. $\mathcal{T h e}$ aim is to show various ways in which tariffs on South $\mathcal{A f r i c a n}$ imports can be analysed such that $\mathcal{D T}$ I can develop in-fouse capacity to undertake such analysis on an on-going basis. \mathcal{A} cursory comparison with earlier analysis suggests that tariffs have declined over the period 1997-2001, notably for manufacturing. However, further tariff liberalisation has been slowin last couple of years. Tariff peaks still exist for a number of broad categories of commodities such as processed foods ($\mathcal{H S} 0-2)$, veficles and components thereof ($\mathcal{H} S$ $(\mathcal{H S} 40)$ and clothing and textiles ($\mathcal{H S} 6)$. About 25% of the $\mathcal{H S} 8$ commodity lines are faced with non ad-valorem tariffs, although the value of imports involved is not more than 4% of totalimport in 2000 . An attempt is made to convert non ad-valorem tariffs in order to checkfor tariff peaks. The highest ad-valorem equivalents are recorded for processed food, in various stages, and textiles. Finally, duty collection rates, which can give an indication of the efficiency of duty collection are lowest for mineralfuels, motor veficles and components thereof. Ulsing a couple of static methods on effective tariff rates singles out the textiles, clothing, footwear, leather, motor veficles, and some food processing sectors as directly and indirectly fighly protected. Simple correlation coefficients suggest that duty collection rates and the nominal tariff schedule are reasonable indicators of effective rates of protection at the chosen aggregation level of activities.

Table of Content
$\mathcal{A b s t r a c t}$ 1

1) Introduction 2
2) The Tariff Schedule of Iuly 2000 3
3) $\mathcal{T a r i f f s}$ and $\mathcal{F I} \mathcal{A} s$ 7
4) Imports for the Year 2000 8
5) Conversion of Specific and Mixed Tariffs to $\mathcal{A d}$-valorem \mathcal{T} ariffs 12
6) Tariffs by Sector 18
7) Collection Rates 22
8) Effective Rates of Protection 24
9) Conclusions and Recommendations 29
References 29

[^0]List of Tables
Table 1: Tariffs identified by Customs \& Excise, Iuly 2000. \qquad5
Table 2: Tariffs identified by Customs \& Excise, March 2001 6
Table 3: A comparison of consolidated tariff schedules for I uly 2000 and March 2001 7
$\mathcal{T a b l e} 4: \mathcal{A}$ comparison of consolidated tariff schedules for imports from the $\mathcal{E L}, \mathcal{S A D C}$ and $\mathcal{R o W}$ ($\mathcal{M a r c h}$ 2001) 7
Table 5: Tariffs identified by Customs \& Excise, Iuly 2000 combined with import values for the year 2000 9
Table 6: Consolidated tariff analysis based on $\mathcal{I} u l y 2000$ tariff schedule and 2000 imports (current $\mathcal{R} 000$ values).. 10Table 7: HS \& lines with ad-valorem tariffs of more than 40% (Imports in current Rand values) based on the I uly2000 schedule and 2000 imports12
Table 8: Rules for the selection on the appropriate ad-valorem equivalent of specific, mixed and combine tariffs 1 14
Table 9: Ad-valorem equivalents tariffs, I uly 2000 (imports and duties collected: year 2000,'000)..... 15
Table 10: Consolidated tariff analysis of ad-valorem equivalents of other-than-ad-valorem-tariffs of the guly 2000tariff schedule and associated imports for the 2000 (current Rand values)16
Table 11: Consolidated tariff analysis of ad-valorem and ad-valorem equivalents tariff rates of the guly 2000 tariff schedule and associated imports for 2000 (current Rand values) 17
Table 12: HS 8 lines with ad-valorem equivalent tariffs of more than 40% (Imports in current Rand values) based on the Iuly 2000 schedule and 2000 imports 18
Table 13: Tariff structure for 1997, 2000 and 2001 with imports for 2000 19
Table 14: Tariff Structure for SICv5, guly 2000 and \mathcal{I} une 1997, with imports for the ye ar 2000 20
Table 15: Ranked tariff Structure for SICv5, Iuly 2000 and \mathcal{I} un 1997, with imports for the year 2000 22
Table 16: Consolidated tariff analysis based on $\mathcal{I} u l y 2000$ tariff schedule and 2000 imports, actual duties collected and potential duties (current \mathcal{R} million) 23
Table 17: Consolidated tariff analys is based on Iuly 2000 tariff schedule and 2000 imports, actual duties collected and potential duties (current R million) for 22 broad categories of commodities 24
Table 18: Nominal and effective rates of protection for 2000 based on the tariff structure 26
Table 19: Nominal and effective rates of protection for 2000 based on the collection rates 28
List of FiguresFigure 1: Tariff lines (Iuly 2000) and corresponding import values for the year 200011

1) Introduction

Trade liberalisation in South Africa has brought about a lowering of tariffs and a simplification of the tariff schedule. In this note we use recent detailed tariff schedules that are currently available at $\mathcal{D T} I$ and we apply these schedules to import data at the most detailed level publisfed by Customs and Excise. In doing so, we can undertake various tariff analyses. \mathcal{A} cursory comparison with earlier tariff analysis suggests that tariffs have declined over the period 1997-2000, notably for manufacturing. However, progress fas been slow in last couple of years.

We employ the $\mathcal{H S}$ \& $\mathcal{M F \mathcal { N }}$ tariff schedule for March 2001 and I uly 2000 . Since one of the objectives of adkering to a rigid tariff liberalisation path, such as the one chosen by the South Africangovernment, is to provide certainty and stability to importers and investors, we assume that the guly 2000 schedule is representative for the full 2000 calendar year. Obviously, this assumption is contestable, but probably agood departure point to get an initial tariff analys is off the ground. We are fortunate to employ recently released import data for the year 2000 at the same $\mathcal{H S}$ \& le vel.

We start with an analysis of the tariff schedule itself, followed in section 3 with an application of the tariff schedule to the trade data with the aim to identify tariff peaks and in section 4 with a brief look at tariff differentiation in the context of severalfree trade agreements recently concluded by South Africa. In section 5 we make an attempt to convert non-advalorem tariffs into ad-valorem tariffs and we reassess the tariff peaks. Section 6 presents an analysis at the sectoral level, which offers a link between trade and industrial policy, while section 7 discusses a comparison of actual and potential duty collection rates. Section 8 applies a couple of simple measures of effective rates of protection. Although the results present an interesting snapshot picture of the current tariff schedule, it offers only a limited intertemporal vie w and is essentially a static analysis. What is required is to undertaken this kind of analysis on a recurring basis so that such an intertemporal view can be obtained. We therefore conclude with recommendation as to how $\mathcal{D T}$ I should consider maintaining a data base and system to undertake tariff analysis on a regular 6asis.

2) The Tariff Schedule of Iuty 2000

In this section we ignore tariffs on imports from the $\mathcal{E \mathcal { U }}$ and $\mathcal{S} \mathcal{A D} \mathcal{C}$ which may or may not be exempt from import duties at the time of writing and we also do not consider rebates for reasons of convenience. Information in this regard would obviously be crucial to any future application along the lines suggested in this section and we briefly turn to the ELl and SADC schedules in the next section. We start with the guly 2000 schedule, followed by a vie w on the March 2001 schedule. The former is important because there are no matching trade data available for the latter.

The $\mathcal{H S} 8 \mathcal{M F \mathcal { N }}$ tariff schedule as of I uly 2000 identifies 7824 commodity lines and 211 unique tariffs consisting of ad-valorem, specific, mixed, compound and other tariffs and combinations thereof. These tariffs are shown in Table 1. In row 1, it can be seen that the highest tariff of 55% only appears once, while the zero tariff occurs about 3500 times, i.e. for about 45% of the $\mathcal{H S} 8$ commodity lines identified. Other frequently used ad-valorem tariffs are 5% (312 lines, see row 33), 10% (513 lines, see row 27), 15% (522 lines, see row 21), 20% (533 (ines, see row 15), 25% (116 lines, see row 11) and 30% (153 lines, see row 9). The number of unique ad-valorem tariffs amount to 35. For 1999 Lewis (2001) still counted 44 tariff "bands", as he calls it. So, some rationalisation fas taken place between 1999 and 2000 although a different source was used in the form of the UNCTAPD $\mathcal{T R A I N S}$ data 6 ase.
S pecific tariffs and the combination of specific and ad-valorem tariffs in total apply to almost $2000 \mathcal{H S} 8$ commodity lines, which constitutes about 25% of all lines identified. The most frequently used combination of specific and advalorem tariff is " 22% or 30% with a maximum of $1000 \mathrm{c} / \mathrm{kg}$ " which occurs about 188 times (see row 175). Another combination tariff that is popular is " 22% or 30% with a maximum of $2020 \mathrm{c} / \mathrm{kg}^{\prime \prime}$ which occurs 95 times (see row 117). $\mathcal{H a v i n g}$ more than 200 different tariffs suggests that it makes sense to further simplify the tariff schedule.

Table 1: Tariffs identified by Customs \& Excise, Iuly 2000

row	Tariff 1	$\begin{gathered} \hline \# \\ \text { lines } \\ 2 \\ \hline \end{gathered}$	\% of lines 3	row	Tariff 1	$\begin{gathered} \hline \# \\ \text { cines } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \% \text { of } \\ \text { Cines } \\ 3 \\ \hline \end{gathered}$	row	Tariff 1	$\begin{gathered} \# \\ \text { lines } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { \% of } \\ \text { lines } \\ 3 \\ \hline \end{gathered}$
1	55.0\%	1	0.0%	71	40\% or $60 \%, \max 5280 \mathrm{c} / \mathrm{ka}$	66	0.8\%	141	22% or $30 \%, \max 2240 \mathrm{c} / \mathrm{ka}$	1	0.0%
2	50.0\%	1	0.0%	72	40% or 60%, max $5090 \mathrm{c} / \mathrm{kg}$	3	0.0\%	142	22% or 30%, max. $2160 \mathrm{c} / \mathrm{kg}$	20	0.3%
3	47.0%	15	0.2%	73	40% or 60%, max $5000 \mathrm{c} / \mathrm{kg}$	3	0.0\%	143	22% or 30%, max $2080 \mathrm{c} / \mathrm{kg}$	1	0.0%
4	45.0\%	5	0.1%	74	40% or 60%, max $4800 \mathrm{c} / \mathrm{kg}$	57	0.7\%	144	22% or 30%, max $2020 \mathrm{c} / \mathrm{kg}$	95	1.2%
5	43.0\%	2	0.0%	75	40% or 60%, max $4225 \mathrm{c} / \mathrm{kg}$	20	0.3%	145	22% or 30%, max $2000 \mathrm{c} / \mathrm{kg}$	1	0.0%
6	40.0\%	39	0.5%	76	40% or $60 \%, \max 3590 \mathrm{c} / \mathrm{kg}$	6	0.1\%	146	22% or 30%, max $1980 \mathrm{c} / \mathrm{kg}$	1	0.0\%
7	36.0%	1	0.0%	77	40% or 60%, max $3460 \mathrm{c} / \mathrm{kg}$	1	0.0%	147	22% or 30%, max $1920 \mathrm{c} / \mathrm{kg}$	1	0.0\%
8	35.0%	14	0.2%	78	40% or 60%, max $3380 \mathrm{c} / \mathrm{kg}$	13	0.2\%	148	22% or 30%, max. $1830 \mathrm{c} / \mathrm{kg}$	60	0.8%
9	30.0%	153	2.0%	79	40% or 60%, max $270 \mathrm{c} / \mathrm{pr}$	4	0.1\%	149	22% or 30%, max $1790 \mathrm{c} / \mathrm{kg}$	4	0.1\%
10	27.0\%	3	0.0%	80	40% or 60%, max $20500 \mathrm{c} / \mathrm{kg}$	1	0.0\%	150	22% or $30 \%, \max 1760 \mathrm{c} / \mathrm{kg}$	1	0.0\%
11	25.0\%	116	1.5%	81	40% or 60%, max. $190 \mathrm{c} / \mathrm{kg}$	1	0.0\%	151	22% or 30%, max. $1730 \mathrm{c} / \mathrm{kg}$	3	0.0%
12	23.0\%	1	0.0%	82	40% or 60%, max 190 ceach	2	0.0\%	152	22% or $30 \%, \max 1665 \mathrm{c} / \mathrm{kg}$	3	0.0%
13	22.0\%	26	0.3%	83	40% or 60%, max $1630 \mathrm{c} / \mathrm{kg}$	1	0.0%	153	22% or 30%, max $1660 \mathrm{c} / \mathrm{kg}$	14	0.2%
14	21.0%	2	0.0%	84	40% or 60%, max $11520 \mathrm{c} / \mathrm{kg}$	2	0.0\%	154	22% or $30 \%, \max 1650 \mathrm{c} / \mathrm{kg}$	2	0.0\%
15	20.0\%	533	6.8%	85	40% or 60%, max $10700 \mathrm{c} / \mathrm{kg}$	2	0.0\%	155	22% or 30%, max $1600 \mathrm{c} / \mathrm{kg}$	3	0.0%
16	19.0%	5	0.1\%	86	40% or $120 \mathrm{c} / \mathrm{u}$	3	0.0\%	156	22% or $30 \%, \max 1555 \mathrm{c} / \mathrm{kg}$	15	0.2%
17	18.0%	2	0.0%	87	$4.36 c / l i$	1	0.0\%	157	22% or 30%, max. $1550 \mathrm{c} / \mathrm{kg}$	1	0.0%
18	17.5\%	1	0.0%	88	$4.15 \mathrm{c} / \mathrm{kg}$	7	0.1\%	158	22% or $30 \%, \max 1540 \mathrm{c} / \mathrm{kg}$	5	0.1\%
19	17.0%	35	0.4%	89	$3 \mathrm{c} / \mathrm{kg}$	2	0.0%	159	22% or 30%, max $1500 \mathrm{c} / \mathrm{kg}$	1	0.0\%
20	16.0%	11	0.1\%	90	$35 \mathrm{c} /$ no	1	0.0\%	160	22% or 30%, max. $1430 \mathrm{c} / \mathrm{kg}$	2	0.0%
21	15.0%	522	6.7%	91	35% or 500c/2u	4	0.1\%	161	22% or 30%, max $1410 \mathrm{c} / \mathrm{kg}$	51	0.7\%
22	14.0%	4	0.1\%	92	$325 c / \mathrm{kg}, \max 39 \%$	1	0.0\%	162	22% or 30%, max $1330 \mathrm{c} / \mathrm{kg}$	1	0.0%
23	13.0%	11	0.1\%	93	$317 \mathrm{c} /$ li of absolute alcohol	2	0.0\%	163	22% or 30%, max $1320 \mathrm{c} / \mathrm{kg}$	8	0.1\%
24	12.5\%	9	0.1\%	94	30% or $7.25 \mathrm{c} / \mathrm{kg}$	2	0.0\%	164	22% or 30%, max $1300 \mathrm{c} / \mathrm{kg}$	15	0.2%
25	12.0%	1	0.0%	95	30% or 500c/2u	6	0.1\%	165	22% or 30%, max $1280 \mathrm{c} / \mathrm{kg}$	70	0.9%
26	11.0%	1	0.0%	96	30% or $4.5 \mathrm{c} / \mathrm{kg}$	3	0.0%	166	22% or $30 \%, \max 1230 \mathrm{c} / \mathrm{kg}$	4	0.1\%
27	10.0%	513	6.6%	97	$3.6 \mathrm{c} / \mathrm{kg}, \max 25 \%$	1	0.0\%	167	22% or 30%, max $1150 \mathrm{c} / \mathrm{kg}$	16	0.2%
28	9.0\%	40	0.5%	98	$3.3 \mathrm{c} / \mathrm{li}$	1	0.0\%	168	22% or 30%, max $1145 \mathrm{c} / \mathrm{kg}$	4	0.1\%
29	8.5\%	1	0.0%	99	$26.9 \mathrm{c} / \mathrm{kg}$	1	0.0\%	169	22% or 30%, max $1135 \mathrm{c} / \mathrm{kg}$	43	0.5\%
30	8.0\%	2	0.0%	100	$25.3 \mathrm{c} / \mathrm{kg}$	1	0.0\%	170	22% or 30%, max $1100 \mathrm{c} / \mathrm{kg}$	15	0.2%
31	7.0\%	1	0.0%	101	25\% plus 1.04c/li	1	0.0%	171	22% or $30 \%, \max 1090 \mathrm{c} / \mathrm{kg}$	1	0.0%
32	6.6%	10	0.1\%	102	25% or $70 \mathrm{c} / \mathrm{kg}$	26	0.3%	172	22% or $30 \%, \max 1060 \mathrm{c} / \mathrm{kg}$	5	0.1\%
33	5.0\%	312	4.0%	103	25% or $200 \mathrm{c} / \mathrm{kg}$	11	0.1\%	173	22% or 30%, max $1040 \mathrm{c} / \mathrm{kg}$	62	0.8%
34	4.0\%	1	0.0%	104	25% or $150 \mathrm{c} / \mathrm{kg}$	6	0.1\%	174	22% or 30%, max $1030 \mathrm{c} / \mathrm{kg}$	1	0.0%
35	3.0\%	4	0.1\%	105	$23.1 \mathrm{c} / \mathrm{kg}$	1	0.0%	175	22% or 30%, max $1000 \mathrm{c} / \mathrm{kg}$	188	2.4\%
36	0.0%	3,485	44.5%	106	$220 \mathrm{c} / \mathrm{kg}$	2	0.0\%	176	$21.2 \mathrm{c} / \mathrm{kg}$	1	0.0%
37	$9.2 \mathrm{c} / \mathrm{kg}$	1	0.0%	107	$22.2 \mathrm{c} / \mathrm{kg}$	1	0.0\%	177	20% or $215 \mathrm{c} / \mathrm{kg}$ less 80%	1	0.0\%
38	$8 \mathrm{c} / \mathrm{kg}$	6	0.1\%	108	22% max $910 \mathrm{c} / \mathrm{kg}$	3	0.0\%	178	$2.75 \mathrm{c} / \mathrm{kg}$	8	0.1\%
39	$78 \mathrm{c} / \mathrm{kg}$	1	0.0%	109	22%, max $700 \mathrm{c} / \mathrm{kg}$	69	0.9\%	179	$2.4 \mathrm{c} / \mathrm{kg} \mathrm{net}$	3	0.0\%
40	$77 \mathrm{c} / \mathrm{kg}$	1	0.0%	110	22%, max $1700 \mathrm{c} / \mathrm{kg}$	1	0.0\%	180	$2.25 \mathrm{c} / \mathrm{kg}$	2	0.0\%
41	$6 \mathrm{c} / \mathrm{kg}$	58	0.7%	111	22% or 33%, max $960 \mathrm{c} / \mathrm{kg}$	1	0.0\%	181	$17 \mathrm{c} / \mathrm{kg}$	1	0.0\%
42	60% or $2500 \mathrm{c} / \mathrm{kg}$	2	0.0%	112	22% or 33%, max $2880 \mathrm{c} / \mathrm{kg}$	2	0.0\%	182	$160 \mathrm{c} / \mathrm{kg}$	1	0.0\%
43	$6.6 c / \mathrm{kg}, \max 25 \%$	1	0.0%	113	22% or 33%, max $1830 \mathrm{c} / \mathrm{kg}$	1	0.0\%	183	$16.5 \mathrm{c} / \mathrm{kg}, \max 25 \%$	1	0.0%
44	$5 c / / i$	1	0.0%	114	22% or 33%, max $1000 \mathrm{c} / \mathrm{kg}$	1	0.0\%	184	$154 c / l i$	8	0.1\%
45	$5 \mathrm{c} / \mathrm{kg}$	7	0.1\%	115	22% or 30%, max $960 \mathrm{c} / \mathrm{kg}$	50	0.6%	185	$150 c / u$	2	0.0%
46	$57.7 \mathrm{c} / \mathrm{kg}$	1	0.0%	116	22% or 30%, max $900 \mathrm{c} / \mathrm{kg}$	1	0.0\%	186	$15.103 \mathrm{c} / \mathrm{kg}$	2	0.0\%
47	$56.7 \mathrm{c} / \mathrm{kg}$	1	0.0%	117	22% or 30%, max $890 \mathrm{c} / \mathrm{kg}$	92	1.2 \%	187	15% plus 50 c/u	2	0.0%
48	$55.5 \mathrm{c} / \mathrm{kg}$	1	0.0%	118	22% or 30%, max $820 \mathrm{c} / \mathrm{kg}$	46	0.6\%	188	15\% plus 200c/u	3	0.0%
49	$50 \mathrm{c} / \mathrm{no}$	1	0.0%	119	22% or 30%, max $800 \mathrm{c} / \mathrm{kg}$	30	0.4\%	189	15% or $860 \mathrm{c} / \mathrm{kg}$ less 85%	2	0.0%
50	$500 \mathrm{c} / \mathrm{kg}$	8	0.1\%	120	22% or 30%, max $775 \mathrm{c} / \mathrm{kg}$	47	0.6\%	190	$136 \mathrm{c} / \mathrm{li}$	7	0.1\%
51	$50.3 \mathrm{c} / \mathrm{kg}$	1	0.0%	121	22% or 30%, max $770 \mathrm{c} / \mathrm{kg}$	16	0.2%	191	$12.5 \mathrm{c} / \mathrm{kg}$	1	0.0\%
52	$5.5 \mathrm{c} / \mathrm{kg}$	14	0.2%	122	22% or 30%, max $690 \mathrm{c} / \mathrm{kg}$	21	0.3\%	192	11c/ 10	3	0.0%
53	$4 \mathrm{c} / \mathrm{kg}$	4	0.1\%	123	22% or 30%, max $3840 \mathrm{c} / \mathrm{kg}$	14	0.2%	193	$118.9 \mathrm{c} / \mathrm{kg}$	4	0.1\%
54	$450 \mathrm{c} / \mathrm{kg}$	8	0.1\%	124	22% or 30%, max $3425 \mathrm{c} / \mathrm{kg}$	4	0.1\%	194	$110 \mathrm{c} / \mathrm{kg} \mathrm{net}$	1	0.0%
55	$40 \mathrm{c} / \mathrm{kg}$	1	0.0\%	125	22% or 30%, max $3200 \mathrm{c} / \mathrm{kg}$	1	0.0\%	195	$110 \mathrm{c} / \mathrm{Kg}$ less 80%	1	0.0%
56	$400 \mathrm{c} / \mathrm{kg}$	2	0.0\%	126	22% or 30%, max $3170 \mathrm{c} / \mathrm{kg}$	31	0.4\%	196	$10 \mathrm{c} / \mathrm{kg}$	1	0.0%
57	$40 \%, \max 3000 \mathrm{c} / \mathrm{kg}$	32	0.4%	127	22% or $30 \%, \max 3070 \mathrm{c} / \mathrm{kg}$	5	0.1\%	197	$100 \mathrm{c} / \mathrm{u}$	1	0.0\%
58	40% plus $40.3 \mathrm{c} / \mathrm{kg}$	1	0.0%	128	22% or $30 \%, \max 2960 \mathrm{c} / \mathrm{kg}$	15	0.2%	198	10% or $55 \mathrm{c} / \mathrm{kg}$ less 90%	1	0.0\%
59	40% or 60%, max $9780 \mathrm{c} / \mathrm{kg}$	4	0.1\%	129	22% or 30%, max $2880 \mathrm{c} / \mathrm{kg}$	16	0.2\%	199	$1.8 \mathrm{c} / \mathrm{kg}, \max 15 \%$	1	0.0\%
60	40% or 60% max $9700 \mathrm{c} / \mathrm{kg}$	5	0.1\%	130	22% or 30%, max $2690 \mathrm{c} / \mathrm{kg}$	16	0.2\%	200	$1.11 \mathrm{c} / \mathrm{kg}$	1	0.0%
61	40% or 60%, max $8980 \mathrm{c} / \mathrm{kg}$	21	0.3%	131	22% or $30 \%, \max 2640 \mathrm{c} / \mathrm{kg}$	42	0.5\%	201	$0.99 \mathrm{c} / \mathrm{kg}$	1	0.0\%
62	40% or 60%, max. $8975 \mathrm{c} / \mathrm{kg}$	1	0.0%	132	22% or 30%, max $2570 \mathrm{c} / \mathrm{kg}$	55	0.7\%	202	$0.8 \mathrm{c} / \mathrm{kg}$	1	0.0%
63	40% or $60 \%, \max 8160 \mathrm{c} / \mathrm{kg}$	3	0.0%	133	22% or 30%, max $2568 \mathrm{c} / \mathrm{kg}$	2	0.0%	203	$0.85 \mathrm{c} / \mathrm{kg}$	2	0.0%
64	40% or 60% max $8000 \mathrm{c} / \mathrm{kg}$	2	0.0%	134	22% or 30% max $2440 \mathrm{c} / \mathrm{kg}$	2	0.0%	204	$0.65 \mathrm{c} / \mathrm{kg}$	3	0.0%
65	40% or 60%, max. $7500 \mathrm{c} / \mathrm{kg}$	3	0.0%	135	22% or 30%, max $2425 \mathrm{c} / \mathrm{kg}$	1	0.0\%	205	0.55c/li, max 8%	2	0.0\%
66	40% or 60%, max $7180 \mathrm{c} / \mathrm{kg}$	7	0.1\%	136	22% or 30%, max $2380 \mathrm{c} / \mathrm{kg}$	48	0.6%	206	$0.45 \mathrm{c} / \mathrm{kg}$	1	0.0%
67	40% or 60%, max $6865 \mathrm{c} / \mathrm{kg}$	7	0.1\%	137	22% or 30%, max $2355 \mathrm{c} / \mathrm{kg}$	2	0.0\%	207	$0.44 \mathrm{c} / \mathrm{kg}$	2	0.0\%
68	40% or $60 \%, \max 6105 \mathrm{c} / \mathrm{kg}$	2	0.0%	138	22% or 30%, max $2350 \mathrm{c} / \mathrm{kg}$	14	0.2%	208	0.1c/li, max 8%	1	0.0\%
69	40% or $60 \%, \max 5810 \mathrm{c} / \mathrm{kg}$	8	0.1\%	139	22% or 30%, max $2305 \mathrm{c} / \mathrm{kg}$	10	0.1\%	209	$0.183 \mathrm{c} / \mathrm{li}$	3	0.0\%
70	40% or 60%, max $5740 \mathrm{c} / \mathrm{kg}$	4	0.1\%	140	22% or 30%, max $2296 \mathrm{c} / \mathrm{kg}$	1	0.0\%	210	$0.091 \mathrm{c} / \mathrm{li}$	1	0.0%
									Total	7824	100%

Source: DTI
\mathcal{A} more recent tariff schedule is available for the year 2001. The schedule is presented in the next table and shows that the total number of unique tariff lines has in fact increased from 210 to 226 while the number of $\mathcal{H S} 8$ commodity lines has also increased slightly from 7824 to 7831.

Table 2: Tariffs identified by Customs \& Excise, March 2001

row	Tariff	$\begin{gathered} \text { \# } \\ \text { lines } \end{gathered}$	$\begin{aligned} & \% \text { of } \\ & \text { lines } \end{aligned}$		Tariff 1	$\begin{gathered} \hline \text { \# } \\ \text { lines } \\ 2 \end{gathered}$	$\begin{gathered} \hline \% \text { of } \\ \text { lines } \\ 3 \\ \hline \end{gathered}$	row	Tariff	$\begin{gathered} \hline \text { \# } \\ \text { lines } \\ 2 \end{gathered}$	$\%$ of lines 3
	155.0%	1	0.0\%	77	22% or 27% with a maximum	1	0.0\%	152	22% or 27% with a maximum	1	0.0\%
	250.0%	1	0.0%	78	22% or 27% with a maximum	61	0.8%	153	22% or 27% with a maximum	91	1.2\%
	345.0%	5	0.1\%	79	22% or 27% with a maximum	5	0.1\%	154	22% or 27% with a maximum	1	0.0\%
	443.0%	2	0.0\%	80	22% or 27% with a maximum	1	0.0%	155	22% or 27% with a maximum	51	0.7\%
	542.5%	15	0.2%		22% or 27% with a maximum	15	. 2%	156	22% or 30% with a maximum	1	0.0
	640.0%	28	0.4%	82	22% or 27% with a maximum	36	0.5\%	157	22% or 7% with a maximum of	1	\%
	737.0%	12	2\%	83	22% or 27% with a maximum	4	. 1%	158	$220 \mathrm{c} / \mathrm{kg}$	2	0.0\%
	836.0%	1	. 0 \%	84	22% or 27% with a maximum	16	0.2%	159	25% or $150 \mathrm{c} / \mathrm{kg}$	6	0.1\%
	35.0\%	2	0.0\%	85	22% or 27% with a maximum	4	0.1\%	160	25% or $200 \mathrm{c} / \mathrm{kg}$	11	0.1\%
10	(32.5%	11	0.1%	86	22% or 27% with a maximum	1	0.0%	161	25% or $70 \mathrm{c} / \mathrm{kg}$	26	0.3\%
	1130.0%	123	1.6%	87	22% or 27% with a maximum	59	0.8\%	162	25% plus 1.04c/li	1	0.0\%
12	228.0%	3	0.0\%	88	22% or 27% with a maximum	15	0.2%	163	3.3c/li	1	0.0\%
13	327.0%	25	0.3\%	89	22% or 27% with a maximum	8	0.1\%	164	$3.6 \mathrm{c} / \mathrm{kg}$ with a maximum of	1	. 0 \%
4	425.0%	111	. 4%	90	22% or 27% with a maximum	1	. 0.0	165	30% or $4.5 \mathrm{c} / \mathrm{kg}$	3	. 0%
15	522.5%	3	0.0%		22% or 27% with a maximum	1	0.0\%	16	30% or 500c/2u	10	0.1\%
16	22.0%	16	0.2%	92	22% or 27% with a maximum	44	0.6%	167	30% or $7.25 \mathrm{c} / \mathrm{kg}$	2	0.0\%
17	721.0%	3	0.0\%	93	22% or 27% with a maximum	2	0.0%	168	$317 \mathrm{c} / \mathrm{l}$ of absolute alcohol	2	0.0\%
18	820.0%	533	6.8%	94	22% or 27% with a maximum	1	0.0\%	169	$325 \mathrm{c} / \mathrm{kg}$ with a maximum of	1	0.0\%
19	919.0%	28	0.4\%	95	22% or 27% with a maximum	5	0.1%	170	$35 \mathrm{c} / \mathrm{no}$	1	\%
0	0 18.0\%	6	0.1\%	96	22% or 27% with a maximum	1	0.0\%	171	37% with a maximum of 3	2	0.0\%
21	117.5%	1	0.0%	97	22% or 27% with a maximum	15	0.2\%	172	37% with a maximum of 3	4	0.1\%
22	217.0%	5	0.1%	98	22% or 27% with a maximum	3	0.0\%	173	37% or 120 c/each	5	0.1\%
23	316.0%	11	0.1\%	99	22% or 27% with a maximum	2	0.0\%	174	37% with a maximum of 3	2	0.0\%
24	415.0%	527	6.7%	100	22% or 27% with a maximum	1	0.0\%	175	37% with a maximum of 3	24	0.3\%
25	514.0%	3	0.0%		22% or 27% with a maximum	13	0.2%	176	$3 \mathrm{c} / \mathrm{kg}$	2	0.0\%
26	613.0%	17	0.2%	102	22% or 27% with a maximum	3	0.0\%	177	4.15 c/kg	7	.1\%
27	712.5%	9	0.1\%	103	22% or 27% with a maximum	3	0.0\%	178	4.36c/li	1	. 0%
28	812.0%	1	0.0\%	104	22% or 27% with a maximum	1	0.0\%	179	40% or 54% with a maximum	1	. $\%$
29	911.0%	1	0.0\%	105	22% or 27% with a maximum	4	0.1%	180	40% or 54% with a maximum	2	0.0\%
30	0 10.0\%	534	6.8\%	106	22% or 27% with a maximum	3	0.0\%	181	40% or 54% with a maximum	2	0.0\%
	19.8%	2	0.0\%	107	22% or 27% with a maximum	46	0.6%	182	40% or 54% with a maximum	3	0.0\%
2	29.4%	7	0.1%	108	22% or 27% with a maximum	1	0.0\%	183	40% or 54% with a maximum	1	0.0\%
3	38.5%	1	0.0\%	109	22% or 27% with a maximum	1	0.0\%	184	40% or 54% with a maximum	4	0.1\%
34	48.0%	43	0.5\%	110	22% or 27% with a maximum	15	0.2\%	185	40% or 54% with a maximum	13	0.2%
35	57.4%	3	0.0\%		22% or 27% with a maximum	1	0.0\%	186	40% or 54% with a maximum	1	0.0\%
36	67.0%	1	0.0\%	112	22% or 27% with a maximum	7	0.1%	187	40% or 54% with a maximum	6	0.1\%
7	76.6%	10	0.1%	113	22% or 27% with a maximum	9	.1\%	188	40% or 54% with a maximum	19	0.2\%
8	85.0%	311	4.0\%	114	22% or 27% with a maximum	5	0.1\%	189	40% or 54% with a maximum	3	0.0\%
39	93.0%	5	0.1\%	115	22% or 27% with a maximum	12	. 2 \%	190	40% or 54% with a maximum	53	0.7\%
40	0 0.0\%	3484	4.5%	116	22% or 27% with a maximum	1	0.0%	191	40% or 54% with a maximum	3	0.0\%
	$10.091 c / / i$	2	0.0\%	117	22% or 27% with a maximum	4	0.1\%	192	40% or 54% with a maximum	3	0.0\%
42	$20.183 \mathrm{c} / \mathrm{li}$	4	0.1\%	118	22% or 27% with a maximum	84	1.1\%	193	40% or 54% with a maximum	2	0.0\%
43	3 0.1c/fi with a maximum of 8%	1	0.0%	119	22% or 27% with a maximum	1	0.0\%	194	40% or 54% with a maximum	65	0.8\%
	$40.44 \mathrm{c} / \mathrm{kg}$	2	0.0%	120	22% or 27% with a maximum	1	\%	195	40% or 54% with a maximum	4	0.1\%
45	$50.45 \mathrm{c} / \mathrm{kg}$	1	0.0%		22% or 27% with a maximum	19	0.2\%	196	40% or 54% with a maximum	8	0.1\%
46	60.55 /fi with a maximum of 8%	2	0.0\%	122	22% or 27% with a maximum	1	. 0 \%	197	40% or 54% with a maximum	2	. 0
	$70.65 \mathrm{c} / \mathrm{kg}$	2	0.0\%	123	22% or 27% with a maximum	1	0.0\%	198	40% or 54% with a maximum	7	0.1\%
	$80.85 \mathrm{c} / \mathrm{kg}$	2	0.0%	124	22% or 27% with a maximum	10	0.1\%	199	40% or 54% with a maximum	6	0.1\%
49	$9 \mathrm{0.8c} / \mathrm{kg}$	1	0.0%	125	22% or 27% with a maximum	14	0.2%	200	40% or 54% with a maximum	3	0.0\%
	$00.99 \mathrm{c} / \mathrm{kg}$	1	0.0%	126	22% or 27% with a maximum	2	0.0%	201	40% or 54% with a maximum	2	0.0\%
	$11.1 \mathrm{c} / \mathrm{kg}$	1	0.0\%	127	22% or 27% with a maximum	39	0.5\%	202	40% or 54% with a maximum	3	0.0\%
52	$21.8 \mathrm{c} / \mathrm{kg}$ with a maximum of	1	. 0 \%	128	22% or 27% with a maximum	1	0.0%	203	40% or 54% with a maximum	1	0.0\%
53	310% or 55c/kg less 90%	1	0.0%	129	22% or 27% with a maximum	2	0.0\%	204	40% or 54% with a maximum	21	0.3\%
54	$410.10 / \mathrm{kg}$	1	0.0\%	130	22% or 27% with a maximum	48	0.6%	205	40% or 54% with a maximum	5	0.1\%
55	$510 \mathrm{c} / \mathrm{kg}$	1	0.0\%		22% or 27% with a maximum	37	0.5\%	206	40% or 54% with a maximum	1	0.0\%
56	$6110 \mathrm{c} / \mathrm{Kg}$ less 80%	1	0.0\%	132	22% or 27% with a maximum	16	0.2\%	207	40% or 54% with a maximum	3	. 0%
57	$7110 \mathrm{c} / \mathrm{kg} \mathrm{net}$	1	0.0\%	133	22% or 27% with a maximum	6	0.1\%	208	40% or 60% with a maximum	1	0.0\%
	$811 \mathrm{c} / \mathrm{i}$	4	0.1%	134	22% or 27% with a maximum	15	0.2%	209	40% or 60% with a maximum	1	0.0\%
59	9 136c/ii	7	0.1\%	135	22% or 27% with a maximum	7	0.1\%	210	40% or 60% with a maximum	1	0.0\%
60	O 15% or $860 \mathrm{c} / \mathrm{Kg}$ less 85%	2	0.0\%	136	22% or 27% with a maximum	9	0.1%	211	40.1c/kg	4	0.1\%
61	$1154 \mathrm{c} / \mathrm{li}$	8	0.1%	137	22% or 27% with a maximum	2	0.0\%	212	$400 \mathrm{c} / \mathrm{kg}$	2	0.0\%
	$216.5 \mathrm{c} / \mathrm{kg}$ with a maximum of	1	0.0\%	138	22% or 27% with a maximum	7	\%	213	$450 \mathrm{c} / \mathrm{kg}$	8	0.1\%
	$3160 \mathrm{c} / \mathrm{kg}$	1	0.0\%	139	22% or 27% with a maximum	5	0.1%	214	4c/kg	4	.1\%
	$419.6 \mathrm{c} / \mathrm{kg}$	1	0.0\%	0	22% or 27% with a maximum	12	0.2\%	215	$5.5 \mathrm{c} / \mathrm{kg}$	14	0.2\%
	$52.25 \mathrm{c} / \mathrm{kg}$	2	0.0\%		22% or 27% with a maximum	5	0.1%	216	$500 \mathrm{c} / \mathrm{kg}$	8	0.1\%
66	$62.4 \mathrm{c} / \mathrm{kg} \mathrm{net}$	3	0.0\%	142	22% or 27% with a maximum	25	0.3%	217	50c/no	1	0.0\%
	$72.75 \mathrm{c} / \mathrm{kg}$	8	0.1\%		22% or 27% with a maximum	1	0.0\%	218	$5 \mathrm{c} / \mathrm{kg}$	7	0.1\%
68	820% or $215 \mathrm{c} / \mathrm{kg}$ less 80%	1	0.0\%	144	22% or 27% with a maximum	4	0.1\%	219	5c/li	1	0.0\%
69	920% or $700 \mathrm{c} / \mathrm{kg}$	1	0.0\%	145	22% or 27% with a maximum	14	\%	220	6.6c/ kg with a maximum of	1	. $\%$
	020% plus $29.4 \mathrm{c} / \mathrm{Kg}$	1	0.0\%	146	22% or 27% with a maximum	6	0.1%		$6.7 \mathrm{c} / \mathrm{kg}$	2	0.0
	120% with a maximum of 1	1	0.0\%	147	22% or 27% with a maximum	21	0.3%	222	60% or $2500 \mathrm{c} / \mathrm{kg}$	2	0.0\%
	220% with a maximum of	68	0.9%	148	22% or 27% with a maximum	16	0.2%	223	$6 \mathrm{c} / \mathrm{kg}$	58	0.7\%
73	320% with a maximum of	3	0.0\%	149	22% or 27% with a maximum	47	0.6%	224	$77 \mathrm{c} / \mathrm{kg}$	1	0.0\%
74	422% or 2% with a maximum of	1	0.0\%	150	22% or 27% with a maximum	30	0.4%	225	$8 \mathrm{c} / \mathrm{kg}$	6	0.1\%
75	522% or 27% with a maximum	172	2.2%		22% or 27% with a maximum	46	0.6%	226	$9.2 \mathrm{c} / \mathrm{kg}$	1	0.0\%
76	622% or 27% with a maximum		0.0\%						Total	7831	100\%

[^1]In order to obtain a quick comparison of the two years we present a consolidation of the 2000 and 2001 schedule using a limited number of tariff bands in the next table.

		$\begin{gathered} \hline \text { \# of } \mathcal{H S} \text { \& lines } \\ \mathcal{I}_{\text {uly } 2000} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \% \text { of \# of lines } 1 \\ y_{u f y} 2000 \\ 2 \\ \hline \end{gathered}$	\# of $\mathcal{H S}$ \& lines March 2000 3	\% of \# of lines March 2001
1	tariff $\geq 40 \%$	63	0.8%	52	0.7\%
2	30% <tariff $<40 \%$	168	2.1\%	149	1.9\%
3	20% <tariff $<30 \%$	681	8.7\%	694	8.9\%
,	$15 \% \leq$ tariff $<20 \%$	576	7.4\%	578	7.4\%
5	$10 \% \leq$ tariff $<15 \%$	539	6.9%	565	7.2\%
6	5% <tariff $<10 \%$	366	4.7\%	378	4.8\%
7	0% ¢tariff $<5 \%$	5	0.1\%	5	0.1\%
8	0%	3,485	44.5\%	3484	44.5\%
	Other	1,941	24.9\%	1926	24.6\%
10	Total lines	7824	100.0\%	7831	100.0\%

Source: $\mathcal{D T}$ I

It can be seen that very little has changed when comparing the 2000 and 2001 schedule. Nevertheless, the number of unique ad-valorem tariffs over 40% has dropped by 11 (which constitutes a 17.5% decline) and by about 20 for tariffs between 30% and 40%. The number of zero rated lines fias remained more or less constant.

3) Tariffs and $\mathcal{F T} \mathcal{A} s$

Recently, South Africa has entered into free trade agreements with the $\mathcal{E L}$ and $\mathcal{S A D C}$ and it would be interesting to see if the applied tariffs from these two sources are indeed lower. A consolidated view along the same lines as the previous table is offered in the next table.

Source: $\mathcal{D T}$ I

It can be seen that compared to the rest of the world, the number of $\mathcal{H} S$ commodity lines with ad-valorem tariffs that are equal or higher than 40% is figher on imports that originate in the EUl. Similarly, the number of $\mathcal{H} S$ lines with tariffs betwen 30 and 40% considerably figher in the $\mathcal{S A D C}$ schedule compared to the rest of the world. The reason is that in the EUl and $\mathcal{S A D C}$ preferential schemes a number of other than ad-valorem tariffs, captured in row 10 of column 1 of Table 4, are converted to ad-valorem tariffs. For example the combined tariff of " 40% or 54% with a maximum of $3590 \mathrm{c} / \mathrm{kg}$ " in the general schedule has been converted to a straight ad-valorem tariff of 40% in the case the imports originating in the EUl and 35% when the goods are imported from $\mathcal{S A D}$. This principal of ad-valorem equivalence will be further explored in section 5.

With regard to $\mathcal{S A D C}$ the number of non ad-valorem tariffs has beengreatly reduced and some simplification of the schedule has been achieved, although during $2000 \mathcal{S A D}$ imports only applied about 1.3% of total imports. Less, but still significant, simplification is brought about with regard to imports from the EUl, which, by the way, constitutes about 40% of South Africa's total imports. For example, the number of zero rated $\mathcal{H S} 8$ import commodity lines from the ECl is about 4\% (see row 8, columns 1 and 3:(3631/3484)-1=4\%) figher than the $\mathcal{M F \mathcal { N }}$ schedule while it is 44% higher for imports from $\mathcal{S A D C}$.
4) Imports for the Year 2000
$\mathfrak{A l t h o u g h t ~ t h e ~ p r e v i o u s ~ t w o ~ s e c t i o n s ~ d i s c u s s e d ~ t a r i f f s ~ f o r ~ t h e ~ y e a r ~ 2 0 0 1 , ~ t h i s ~ i s ~ a s ~ y e t ~ n o t ~ a c c o m p a n i e d ~ b y ~ t r a d e ~ d a t a ~}$ so that we cannot present trade weighted tariffs and check whether tariff peaks apply to lines with low or high value imports. For the rest of this paper we, therefore, have to revert back to the 2000 tariff schedule as this is the last year for which import data are available. In order to assess the relative importance of the tariff lines shown in Table 1 we present data on import values in the table below.

Table 5: Tariffs identified by Customs \& Excise, I uly 2000 combined with import values for the year 2000

row	Tariff	Imp ('000)	$\begin{aligned} & \text { \% of } \\ & \text { imp } \end{aligned}$	row Tariff	$\operatorname{Imp}(000)$	$\begin{gathered} \text { \% of } \\ \text { imp } \end{gathered}$	row	Tariff	Imp(000)	$\begin{aligned} & \% \text { of } \\ & \text { imp } \end{aligned}$
	1	2	3	1	2	3		1	2	3
	55.0%	272	0.0%	7140% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	431,839	0.2%	141	22\% or 30\%, max, $2240 \mathrm{c} / \mathrm{kg}$	906	0.0\%
2	50.0\%	67	0.0%	7240% or 60%, max, $5090 \mathrm{c} / \mathrm{kg}$	1,400	0.0\%	142	22% or 30%, max, $2160 \mathrm{c} / \mathrm{kg}$	18,810	0.0\%
3	47.0\%	5,860,042	3.2%	7340% or $60 \%, \max , 5000 \mathrm{c} / \mathrm{kg}$	26,978	0.0\%	143	22% or 30%, max, $2080 \mathrm{c} / \mathrm{kg}$	843	0.0\%
4	45.0\%	19,777	0.0%	7440% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	387,454	0.2%	144	22% or 30%, max, $2020 \mathrm{c} / \mathrm{kg}$	157,549	0.1%
5	43.0\%	179	0.0%	7540% or 60%, max, $4225 \mathrm{c} / \mathrm{kg}$	67,089	0.0%	145	22% or $30 \%, \mathrm{max}, 2000 \mathrm{c} / \mathrm{kg}$	512	0.0\%
6	40.0%	253,142	0.1%	7640% or 60%, max, $3590 \mathrm{c} / \mathrm{kg}$	88,486	0.0\%	146	22% or $30 \%, \mathrm{max}, 1980 \mathrm{c} / \mathrm{kg}$	1,037	0.0\%
7	36.0%	-	0.0%	7740% or 60%, max, $3460 \mathrm{c} / \mathrm{kg}$	537	0.0%	147	22% or 30%, max, $1920 \mathrm{c} / \mathrm{kg}$	387	0.0\%
8	35.0%	15,258,745	8.3\%	7840% or $60 \%, \mathrm{max}, 3380 \mathrm{c} / \mathrm{kg}$	48,117	0.0%	148	22% or $30 \%, \mathrm{max}, 1830 \mathrm{c} / \mathrm{kg}$	138,794	0.1\%
9	30.0\%	1,902,700	1.0%	7940% or 60%, max, $270 \mathrm{c} / \mathrm{pr}$	4,774	0.0\%	149	22% or $30 \%, \mathrm{max}, 1790 \mathrm{c} / \mathrm{kg}$	2,805	0.0\%
10	27.0\%	20,269	0.0\%	8040% or $60 \%, \max , 20500 \mathrm{c} / \mathrm{kg}$	15,603	0.0\%	150	22% or $30 \%, \mathrm{max}, 1760 \mathrm{c} / \mathrm{kg}$	6,702	0.0\%
11	125.0%	1,150,378	0.6%	8140% or 60%, max, $190 \mathrm{c} / \mathrm{kg}$	15	0.0\%	151	22% or 30%, max, $1730 \mathrm{c} / \mathrm{kg}$	7,035	0.0\%
12	23.0%	11,201	0.0%	8240% or 60%, max, 190 c each	504	0.0\%	152	22% or $30 \%, \mathrm{max}, 1665 \mathrm{c} / \mathrm{kg}$	7,823	0.0\%
13	22.0\%	41,450	0.0\%	8340% or 60%, max, $1630 \mathrm{c} / \mathrm{kg}$	4,142	0.0%	153	22% or 30%, max, $1660 \mathrm{c} / \mathrm{kg}$	55,765	0.0\%
14	21.0%	16,515	0.0%	8440% or 60%, max $11520 \mathrm{c} / \mathrm{kg}$	8,400	0.0%	154	22% or 30%, max, $1650 \mathrm{c} / \mathrm{kg}$	27,947	0.0\%
15	20.0\%	8,531,431	4.6%	8540% or 60%, max, $10700 \mathrm{c} / \mathrm{kg}$	993	0.0%	155	22% or $30 \%, \mathrm{max}, 1600 \mathrm{c} / \mathrm{kg}$	1,430	0.0\%
16	19.0%	10,310	0.0%	8640% or $120 \mathrm{c} / \mathrm{u}$	291	0.0\%	156	22% or 30%, max, $1555 \mathrm{c} / \mathrm{kg}$	65,424	0.0\%
17	18.0%	3,117	0.0\%	$874.36 \mathrm{c} / \mathrm{li}$	105,405	0.1\%	157	22% or $30 \%, \mathrm{max}, 1550 \mathrm{c} / \mathrm{kg}$	777	0.0\%
18	17.5%	648	0.0%	$884.15 \mathrm{c} / \mathrm{kg}$	41,794	0.0\%	158	22% or $30 \%, \mathrm{max}, 1540 \mathrm{c} / \mathrm{kg}$	35,541	0.0\%
19	17.0%	193,039	0.1\%	$893 \mathrm{c} / \mathrm{kg}$	1,983	0.0%	159	22% or $30 \%, \mathrm{max}, 1500 \mathrm{c} / \mathrm{kg}$	18,523	0.0\%
20	16.0%	130,797	0.1\%	$9035 \mathrm{c} / \mathrm{no}$	0	0.0\%	160	22% or $30 \%, \mathrm{max}, 1430 \mathrm{c} / \mathrm{kg}$	38,843	0.0\%
21	115.0%	5,533,558	3.0%	9135% or $500 c / 2 u$	516,966	0.3%	161	22% or 30%, max, $1410 \mathrm{c} / \mathrm{kg}$	63,414	0.0\%
22	14.0%	22,453	0.0%	$92325 \mathrm{c} / \mathrm{kg}$, max, 39%	1,639	0.0%	162	22% or 30%, max, $1330 \mathrm{c} / \mathrm{kg}$	465	0.0\%
23	13.0%	287,335	0.2%	$93317 \mathrm{c} / \mathrm{li}$ of a6solute alcotiol	202	0.0%	163	22% or 30%, max, $1320 \mathrm{c} / \mathrm{kg}$	41,686	0.0\%
24	12.5\%	505,689	0.3%	9430% or $7.25 \mathrm{c} / \mathrm{kg}$	617	0.0%	164	22% or $30 \%, \mathrm{max}, 1300 \mathrm{c} / \mathrm{kg}$	15,181	0.0\%
25	12.0\%	9,028	0.0%	9530% or $500 \mathrm{c} / 2 u$	221,600	0.1\%	165	22% or 30%, max, $1280 \mathrm{c} / \mathrm{kg}$	198,401	0.1\%
26	11.0%	9,847	0.0%	9630% or $4.5 \mathrm{c} / \mathrm{kg}$	3,514	0.0%	166	22% or 30%, max, $1230 \mathrm{c} / \mathrm{kg}$	620	0.0\%
27	10.0\%	5,768,122	3.1\%	$973.6 \mathrm{c} / \mathrm{kg}, \mathrm{max}, 25 \%$	56	0.0\%	167	22% or $30 \%, \mathrm{max}, 1150 \mathrm{c} / \mathrm{kg}$	8,880	0.0\%
28	9.0\%	1,292,610	0.7%	$983.3 \mathrm{c} / \mathrm{li}$	666	0.0\%	168	22% or 30%, max, $1145 \mathrm{c} / \mathrm{kg}$	5,698	0.0\%
29	8.5\%	131	0.0%	$9926.9 \mathrm{c} / \mathrm{kg}$	563,124	0.3%	169	22% or 30%, max, $1135 \mathrm{c} / \mathrm{kg}$	20,223	0.0%
30	8.0\%	26,688	0.0\%	$10025.3 \mathrm{c} / \mathrm{kg}$	32	0.0%	170	22% or 30%, max, $1100 \mathrm{c} / \mathrm{kg}$	13,576	0.0\%
31	17.0%	3,752	0.0%	10125% plus 1.04c/li	5,206	0.0\%	171	22% or $30 \%, \mathrm{max}, 1090 \mathrm{c} / \mathrm{kg}$	3	0.0\%
32	6.6\%	540,685	0.3%	10225% or $70 \mathrm{c} / \mathrm{kg}$	22,281	0.0\%	172	22% or $30 \%, \mathrm{max}, 1060 \mathrm{c} / \mathrm{kg}$	7,126	0.0\%
33	5.0\%	7,758,330	4.2%	10325% or $200 \mathrm{c} / \mathrm{kg}$	6,225	0.0\%	173	22% or $30 \%, \mathrm{max}, 1040 \mathrm{c} / \mathrm{kg}$	91,057	0.0\%
34	4.0%	34,065	0.0\%	10425% or $150 \mathrm{c} / \mathrm{kg}$	35	0.0\%	174	22% or $30 \%, \mathrm{max}, 1030 \mathrm{c} / \mathrm{kg}$	55	0.0\%
35	5 3.0\%	10,405	0.0\%	$10523.1 \mathrm{c} / \mathrm{kg}$	2,216	0.0\%	175	22% or $30 \%, \mathrm{max}, 1000 \mathrm{c} / \mathrm{kg}$	384,911	0.2%
36	6.0\%	121,357,37	65.9%	$106220 \mathrm{c} / \mathrm{kg}$	61,702	0.0%	176	$21.2 \mathrm{c} / \mathrm{kg}$	94	0.0\%
37	$79.2 \mathrm{c} / \mathrm{kg}$	545	0.0\%	$10722.2 \mathrm{c} / \mathrm{kg}$	0	0.0\%	177	20% or $215 \mathrm{c} / \mathrm{kg}$ less 80%	805	0.0\%
38	$88 \mathrm{c} / \mathrm{kg}$	17,659	0.0\%	10822%, max, $910 \mathrm{c} / \mathrm{kg}$	905	0.0%	178	$2.75 \mathrm{c} / \mathrm{kg}$	8	0.0\%
39	78c/kg	350	0.0\%	$10922 \%, \max , 700 \mathrm{c} / \mathrm{kg}$	148,740	0.1\%	179	$2.4 \mathrm{c} / \mathrm{kg} \mathrm{net}$	14,263	0.0\%
40) $77 \mathrm{c} / \mathrm{kg}$	2,729	0.0%	11022%, max, $1700 \mathrm{c} / \mathrm{kg}$	2,584	0.0%	180	$2.25 \mathrm{c} / \mathrm{kg}$	32	0.0\%
41	$16 \mathrm{c} / \mathrm{kg}$	227,822	0.1\%	11122% or $33 \%, \max , 960 \mathrm{c} / \mathrm{kg}$	1,435	0.0%	181	$17 \mathrm{c} / \mathrm{kg}$	437	0.0\%
42	60\% or $2500 \mathrm{c} / \mathrm{kg}$	31,072	0.0%	11222% or 33%, max, $2880 \mathrm{c} / \mathrm{kg}$	81	0.0\%	182	$160 \mathrm{c} / \mathrm{kg}$	215,920	0.1%
43	$36.6 \mathrm{c} / \mathrm{kg}, \mathrm{max}, 25 \%$	113	0.0\%	11322% or 33%, max, $1830 \mathrm{c} / \mathrm{kg}$	0	0.0%	183	$16.5 \mathrm{c} / \mathrm{kg}$, max, 25%	121	0.0\%
44	5c/li	4,233	0.0\%	11422% or 33%, max, $1000 \mathrm{c} / \mathrm{kg}$	104	0.0\%	184	154c/li	397,394	0.2\%
45	$5 \mathrm{c} / \mathrm{kg}$	98,483	0.1\%	11522% or 30%, max, $960 \mathrm{c} / \mathrm{kg}$	22,495	0.0%	185	$150 \mathrm{c} / \mathrm{u}$	0	0.0\%
46	5 $57.7 \mathrm{c} / \mathrm{kg}$	275	0.0%	11622% or $30 \%, \max , 900 \mathrm{c} / \mathrm{kg}$	112	0.0\%	186	$15.103 \mathrm{c} / \mathrm{kg}$	213,883	0.1\%
47	$756.7 \mathrm{c} / \mathrm{kg}$	4	0.0%	11722% or 30%, max, $890 \mathrm{c} / \mathrm{kg}$	80,476	0.0\%	187	15% plus $50 \mathrm{c} / \mathrm{u}$	0	0.0\%
48	85.5c/kg	9,075	0.0%	11822% or 30%, max, $820 \mathrm{c} / \mathrm{kg}$	13,867	0.0\%	188	15% plus $200 \mathrm{c} / \mathrm{u}$	0	0.0\%
49	$50 \mathrm{c} / \mathrm{no}$	8	0.0%	11922% or 30%, max $800 \mathrm{c} / \mathrm{kg}$	11,478	0.0\%	189	15% or 860c/kgless 85%	293,122	0.2\%
50) $500 \mathrm{c} / \mathrm{kg}$	119,401	0.1\%	12022% or 30%, max, $775 \mathrm{c} / \mathrm{kg}$	9,923	0.0\%	190	$136 \mathrm{c} / \mathrm{li}$	89,864	0.0\%
51	$150.3 \mathrm{c} / \mathrm{kg}$	45	0.0\%	12122% or $30 \%, \max , 770 \mathrm{c} / \mathrm{kg}$	$51,490$	0.0\%	191	$12.5 \mathrm{c} / \mathrm{kg}$	$2,239$	0.0\%
52	5.5c/kg	18,751	0.0\%	12222% or $30 \%, \max , 690 \mathrm{c} / \mathrm{kg}$	9,150	0.0\%	192	11c/li	42,894	0.0\%
53	$3 \mathrm{c} / \mathrm{kg}$	36,752	0.0\%	12322% or 30%, max, $3840 \mathrm{c} / \mathrm{kg}$	670	0.0\%	193	$118.9 \mathrm{c} / \mathrm{kg}$	12,383	0.0\%
54	$450 \mathrm{c} / \mathrm{kg}$	174,569	0.1\%	12422% or 30%, max, $3425 \mathrm{c} / \mathrm{kg}$	7,660	0.0%	194	$110 \mathrm{c} / \mathrm{kg} \mathrm{net}$	17,289	0.0\%
55	5 $40 \mathrm{c} / \mathrm{kg}$	261,278	0.1\%	12522% or $30 \%, \max , 3200 \mathrm{c} / \mathrm{kg}$	7,607	0.0\%	195	$110 \mathrm{c} / \mathrm{kg} \mathrm{Less} 80 \%$	829	0.0\%
56	. $400 \mathrm{c} / \mathrm{kg}$	115,814	0.1\%	12622% or $30 \%, \max , 3170 \mathrm{c} / \mathrm{kg}$	1,698	0.0\%	196	$10 \mathrm{c} / \mathrm{kg}$	545	0.0\%
57	40\%, max, $3000 \mathrm{c} / \mathrm{kg}$	119,705	0.1\%	12722% or 30%, max, $3070 \mathrm{c} / \mathrm{kg}$	6,006	0.0\%	197	$100 \mathrm{c} / \mathrm{u}$	0	0.0\%
58	40\% plus $40.3 \mathrm{c} / \mathrm{kg}$	312	0.0\%	12822% or 30%, max, $2960 \mathrm{c} / \mathrm{kg}$	5,690	0.0\%	198	10% or $55 \mathrm{c} / \mathrm{kg}$ less 90%	14	0.0\%
59	, 40% or $60 \%, \max , 9780 \mathrm{c} / \mathrm{kg}$	2,460	0.0\%	12922% or 30%, max $2880 \mathrm{c} / \mathrm{kg}$	18,718	0.0\%	199	$1.8 \mathrm{c} / \mathrm{kg}, \mathrm{max}, 15 \%$	4,963	0.0\%
60	40\% or $60 \%, \max , 9700 \mathrm{c} / \mathrm{kg}$	27,475	0.0\%	13022% or 30%, max, $2690 \mathrm{c} / \mathrm{kg}$	2,624	0.0%	200	$1.1 \mathrm{c} / \mathrm{kg}$	1,312	0.0\%
61	140% or 60%, max, $8980 \mathrm{c} / \mathrm{kg}$	14,007	0.0\%	13122% or 30%, max, $2640 \mathrm{c} / \mathrm{kg}$	11,441	0.0\%	201	0.99 $/ \mathrm{kg}$	1,277	0.0\%
62	2 40% or 60%, max, $8975 \mathrm{c} / \mathrm{kg}$	182	0.0\%	13222% or 30%, max, $2570 \mathrm{c} / \mathrm{kg}$	17,704	0.0%	202	$0.8 \mathrm{c} / \mathrm{kg}$	92	0.0\%
63	3 40% or $60 \%, \max , 8160 \mathrm{c} / \mathrm{kg}$	358	0.0\%	13322% or 30%, max, $2568 \mathrm{c} / \mathrm{kg}$	11,469	0.0\%	203	$0.85 \mathrm{c} / \mathrm{kg}$	7	0.0\%
64	4 40% or 60%, max, $8000 \mathrm{c} / \mathrm{kg}$	79,816	0.0\%	13422% or 30%, max, $2440 \mathrm{c} / \mathrm{kg}$	12,963	0.0\%	204	$0.65 \mathrm{c} / \mathrm{kg}$	130,941	0.1\%
65	5 40% or $60 \%, \max , 7500 \mathrm{c} / \mathrm{kg}$	3,518	0.0\%	13522% or 30%, max, $2425 \mathrm{c} / \mathrm{kg}$	160	0.0\%	205	0.55c/li, max, 8%	6,250	0.0\%
66	6 40% or 60%, max, $7180 \mathrm{c} / \mathrm{kg}$	492	0.0\%	13622% or 30%, max, $2380 \mathrm{c} / \mathrm{kg}$	22,403	0.0%	206	$0.45 \mathrm{c} / \mathrm{kg}$	735	0.0\%
67	40\% or 60%, max, $6865 \mathrm{c} / \mathrm{kg}$	40,418	0.0\%	13722% or 30%, max, $2355 \mathrm{c} / \mathrm{kg}$	579	0.0\%	207	$0.44 \mathrm{c} / \mathrm{kg}$	1,694	0.0\%
68	8 40% or $60 \%, \max , 6105 \mathrm{c} / \mathrm{kg}$	200	0.0\%	13822% or 30%, max, $2350 \mathrm{c} / \mathrm{kg}$	12,136	0.0\%	208	0.1c/ii, max, 8%	72,295	0.0\%
69	, 40% or 60%, max, $5810 \mathrm{c} / \mathrm{kg}$	1,480	0.0\%	13922% or 30%, max, $2305 \mathrm{c} / \mathrm{kg}$	9,143	0.0%	209	$0.183 \mathrm{c} / \mathrm{li}$	50,573	0.0\%
70	40\% or $60 \%, \max , 5740 \mathrm{c} / \mathrm{kg}$	1,762	0.0\%	14022% or 30%, max, $2296 \mathrm{c} / \mathrm{kg}$	549	0.0\%	210	0.091c/li	554	0.0\%

Source: $\mathcal{D T}$ I \& Customs \&EXcise

In row 36 it can be seen that about 65% of the value of imports or R121 billion was imported during 2000 at zero duties, while about 3% came in at a 47% tariff (see row 3), about 8% at a 35% tariff (see row 8), 3% at a 15% tariff (see row 15) and 3% at a 10% tariff (see row 27). The specific or other tariffs on the ir own carry little we ight in terms of value of imports. Whether this is because these specific and other tariffs are profibitively figh can only be ascertained if we attempt to convert them to ad-valorem equivalents, as will be shown in the next section.
\mathcal{A} consolidation of the tariffs analysis and the associated imports for the year 2000 is shown in the next table. In row 1 it can be seen that relatively high ad-valorem tariffs of more than 40% apply to less than 1% of the total number of $\mathcal{H S} 8$ tariff lines, with a value of approximately $\mathcal{R} 6$ billion or 3.3% of total imports over the period of observation. A relatively large number of lines have ad-valorem tariffs between 20% and 30% (see row 3). Tariffs betwe en 30% and 40% apply to about 170 lines (see row 2), but they constitute about 9% of the import bill. Specific and other tariffs constitute more than R 7.5 Gillion or about 4% of the recorded import bill during 2000.

Table 6: Consolidated tariff analysis based on g uly 2000 tariff schedule and 2000 imports (current $\mathcal{R} 000$ values)

	\# of $\mathcal{H S} 8$ lines	$\%$ of \# of lines	Imports 2000	$\%$ imports 2000	
	1	2	3	4	
1	tariff $\geq 40 \%$	63	0.8%	$6,133,479$	3.3%
2	$30 \% \leq$ tariff $<40 \%$	168	2.1%	$17,161,445$	9.3%
3	$20 \% \leq$ tariff $<30 \%$	681	8.7%	$9,771,243$	5.3%
4	$15 \% \leq$ tariff $<20 \%$	576	7.4%	$5,871,468$	3.2%
5	$10 \% \leq$ tariff $<15 \%$	539	6.9%	$6,602,475$	3.6%
6	$5 \% \leq$ tariff $<10 \%$	366	4.7%	$9,622,196$	5.2%
7	$0 \% \leq$ tariff $<5 \%$	5	0.1%	44,470	0.0%
8	0%	3,485	44.5%	$121,357,372$	65.9%
9	Other	1,941	24.9%	$7,566,687$	4.1%
10	Total lines /imports	7824	100.0%	$184,130,837$	
11	Actualtotalimports			$188,076,142$	-2.1%
12	$\%$ errordue to missing lines				

Source: $\mathcal{D T}$ I and Customs é Excise
\mathcal{N} Note that due to the difference in recording tariffs and imports, there is an error of about 2.1% over the period of observation as can be seen in row 12 . The difference suggests that there are imports in $\mathcal{H} S$ sommodity lines which are not covered by the tariff schedule. The next figure shows the number of tariff lines and the corresponding import values for 2000.

Figure 1: Tariff lines (guly 2000) and corresponding import values for the year 2000

Source: $\mathcal{D I}$ I \& Customs \& Excise, note that each broad tariff band includes the lower boundary, i.e., the $>$ sign should read \geq

In the next table we show all the $\mathcal{H} S$ commodity lines that have an ad-valorem tariff of more than 40%. It can be seen that the main groups of commodities which are faced with relatively high ad-valorem tariffs are processed foods (HS 0-2), veficles and components thereof ($\mathcal{H S} 87$), tobacco products ($\mathcal{H S} 24$), rubber products ($\mathcal{H S} 40$) and clothing and textiles (HS 6).

Table 7: HS 8 lines with ad-valorem tariffs of more than 40% (Imports in current Rand values) based on the Iuly 2000 schedule and 2000 imports

Source: tariffs: $\mathcal{D T}$ I, \mathcal{T} rade: Customs \& Excise
5) Conversion of S pecific and Mixed Tariffs to $\mathcal{A d}$-valorem \mathcal{T} ariffs

It was noted in the previous section that although 24% of the $\mathcal{H S} 8$ commodity lines in the g uly 2000 schedule are of
a specific or other nature they only represented about 4% of the value of imports over the year 2000 . Nevertheless,
from a point of identifying tariff peaks it makes sense to try and convert these tariffs to ad-valorem tariffs. In this
section we first discuss the methods adopted to convert other tariffs to ad-valorem tariffs, after which we show some results

Specific to ad-valorem tariff conversion, methodology
We start by calculating the unit value of the relevant $\mathcal{H} S$ s commodity lines for the period of observation by dividing value of imports by volume of imports.

$$
\begin{equation*}
\chi_{i}=X_{i} / \mathcal{V}_{i} \tag{1}
\end{equation*}
$$

in which x_{i} is the per unit value of $\mathcal{H S} \&$ commodity line i, X_{i} the total imports of the same commodity line and \mathcal{V}_{i} the volume imported during the period of observation. $\mathcal{B y}$ taking the ratio of the specific tariff of the relevant $\mathcal{H S} 8$ commodity line $\left(t_{i, s p e c}\right)$ by its per unit value we then arrive at the ad-valorem equivalent ($t_{i, a v e}$). This can be written as follows:

$$
\begin{equation*}
t_{i, a v e}=t_{i, s p e c} / \chi_{i}=t_{i, s p e c} /\left(X_{i} / \mathcal{V}_{i}\right) \tag{2}
\end{equation*}
$$

For example if the value of imports is $\mathcal{R 2} 2$ million and the volume is 5 million Kg, the unit value is $\mathcal{R 4}$ per Kg. If the specific tariff is 36 cents per $\mathcal{K g}$, the ad-valorem equivalent is $9 \%(=36 / 400)$. Clearly, the ad-valorem equivalent is dependent on the unit values. If by any chance an importer got a "good deal", say for example he only paid $\mathcal{R} 3$ per Kg, the ad-valorem equivalent of the specific rate of 36 cents per $\mathcal{K g}$ would rise to $12 \%(36 / 300)$. On the other fand, exchange rate devaluation would result in a decline in the ad-valorem equivalent. For example, if the imported commodity is purchased in US \$ terms and the Rand / US \$ exchange rate would devalue 6y 50%, the Rand unit value would become $\mathcal{R} 6$ per $\mathcal{K g}$ and the ad-valorem equivalent would drop to $6 \%(=36 / 600)$. An example of a variation to the specific tariff is " $110 \mathrm{c} / \mathrm{kg}$ less 80% ", where the first part can be approached in the same way as above and the second part is a straightforward discount.

Other tariffs to ad-valorem tariff conversion
The ad-valorem equivalent of a mixed specific / ad-valorem tariff is difficult to establish as it depends on the size of the shipment. There doesn't seem to be a single set of rules that caneasily be applied. What is presented here is therefore rather arbitrary and certainly open for discussion and different options. For example, the ad-valorem equivalent " 22% or 30% with a maximum of $1000 \mathrm{c} / \mathrm{kg}^{\prime}$ could take two different tariffs that vary with the size of the shipment as is shown in the next table, i.e., 22% and 30%. In this case it is perfiaps reasonable to argue that the relevant importers will try and ensure that the size of the shipment is such that the lowest rate applies. As was discussed in section 3 above, this approach also seem to be followed by the $\mathcal{D T}$ I negotiation team when simplifying the general applied schedule during the EUI S $\mathcal{A} \mathcal{F T} \mathcal{A}$ negotiations.

However with a mixed rate such as " 35% or $500 c / 2 u^{2}$, which could take one of two rates, i.e., the ad-valorem equivalent of the specific rate $500 \mathrm{c} / 2 \mathrm{u}$ and the ad-valorem rate of 35%. If the ad-valorem equivalent of the specific component happens to yield an equivalent rate of only 23%, while the ad-valorem rate is 35%, one solution is to take the unweighted average of these two rates, which, then, results in an ad-valorem equivalent of 29%. All in all, a number of conversions rules can be identified and they are summarised in $\mathcal{T} a b l e s$.

Table $8: \mathcal{R u l e s}$ for the selection on the appropriate ad-valorem equivalent of specific, mixed and combine tariffs

	Condition	Rule
1	If imports are zero and the tariff is specific or the first component of the mixed tariff is specific	Accept "na", i.e., not available
2	If imports are zero and the first component of the mixed tariff is ad-valorem	Accept the ad-valorem rate.
3	If the tariff is specific	Accept ad-valorem equivalent as calculated in equation (2)
4	If the first component of the mixed rate is ad-valorem and this rate is smaller than the second ad-valorem component or ad-valorem equivalent of the second component	Accept the minimum rate (as with the EU-SA $\mathcal{F T}$ A schedule)
5	If the first component of the mixed rate is specific and the this rate is smaller than the ad-valorem equivalent of the second component	Accept the minimum rate
6	Else	Accept the simple average of the ad-valorem and ad-valorem equivalent rates

The last condition also occurs if the first component of the mixed rate is specific and the second component is an advalorem maximum rate and the second component is lower than the ad-valorem equivalent of the first component. The results of the above conversion application are shown in \mathcal{T} able 9. In column 1 we present the original specific or other tariff, while column 2 shows the number of $\mathcal{H S} \boldsymbol{s}$ commodity lines with this tariff. In the third column, the value of imports under the relevant tariff is reflected. Note that this may or may not be an aggregation of multiple $\mathcal{H} S \mathcal{8}$ commodity lines which can be verified in the second column. The duties collected for each tariff are shown in the next column followed by the collection rate in column 5. The collection rate is defined as the ratio of the actual duties collected and the value of the imports.

In column 6 we present the weighted ave rage of the ad-valorem equivalent of the tariff shown in column 1, while the unweighted average ad-valorem equivalent can be found in the last column. It can be seen that in one case the unweighted ad-valorem equivalent of the specific rate is as high as 73% (see row 153, although the weighted average is less than 20%) while there are also equivalent rates of 60% (see row 169) and in the late 50% s (see rows 18,105 and 157).

[^2]Table 9: Ad-valorem equivalents tariffs, I uly 2000 (imports and duties collected: year 2000,'000)

	Tariff	\# lines	imp	duties colfect		$\stackrel{\varsigma}{\text { weigh }}$ AUE	unweigh AVE	Tariff	\# lines	imp	duties colfect	$\begin{gathered} 5 \\ \text { collecti } \\ \text { on rate } \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { weigh } \end{gathered}$ $\mathcal{A V E}$	unwe ig h A $\mathcal{I E}$
1	$0.0916 /$ i	1	554	116	20.9\%	0.0\%	0.0%	88. 22% or $30 \%, \max 3840 \mathrm{c} / \mathrm{ka}$	14	670	135	20.1\%	22.0%	22.0%
2	$0.183 \mathrm{c} / \mathrm{li}$	3	50,573	231	0.5\%	0.1\%	0.1\%	89. 22% or $30 \%, \max 690 \mathrm{c} / \mathrm{kg}$	21	9,150	1,430	15.6\%	22.0\%	22.0%
3	0.1c/fi, max 8%	1	72,295	42	0.1\%	4.0\%	4.	90. 22% or 30%, max $770 \mathrm{c} / \mathrm{kg}$	16	51,490	5,819	11.3%	2.0\%	. $\%$
4	$0.44 \mathrm{c} / \mathrm{kg}$	2	1,694	0	0.0%	0.4\%	0.2%	91. 22% or $30 \%, \max 775 \mathrm{c} / \mathrm{kg}$	47	9,923	1,971	19.9%	22.0\%	22.0\%
5	$0.45 \mathrm{c} / \mathrm{kg}$	1	73	0	0.0\%	0.0%	0.0%	92. 22% or 30%, max $800 \mathrm{c} / \mathrm{kg}$	30	11,478	2,413	21.0\%	22.0\%	22.0%
6	0.55c/fi, max 8%	2	6,250	4	0.1\%	4.0\%	4.1\%	93. 22% or $30 \%, \max 820 \mathrm{c} / \mathrm{kg}$	46	13,867	2,244	16.2\%	22.0\%	22.0%
7	$0.65 \mathrm{c} / \mathrm{kg}$	3	130,941	2,321	1.8\%	0.5\%	0.3\%	94. 22% or 30%, max $890 \mathrm{c} / \mathrm{kg}$	92	80,476	13,826	17.2\%	22.0\%	22.0\%
8	$0.85 \mathrm{c} / \mathrm{kg}$	2	7	0	0.1\%	0.1\%	0.1\%	95. 22% or $30 \%, \max 900 \mathrm{c} / \mathrm{kg}$	1	112	33	29.4\%	22.0\%	22.0\%
9	$0.8 c / \mathrm{kg}$	1	92	0	0.3\%	. 3%	0.3%	96. 22% or $30 \%, \max 960 \mathrm{c} / \mathrm{kg}$	50	22,495	4,496	20.0\%	22.0\%	22.0\%
10	$0.99 \mathrm{c} / \mathrm{kg}$	1	1,277	1	0.1\%	0.1\%	0.1\%	97. 22% or $33 \%, \max 1000 \mathrm{c} / \mathrm{kg}$	1	104	0	0.0\%	22.0\%	22.0%
11	1.1c/kg	1	1,312	4	0.3\%	0.7%	0.7\%	98. 22% or $33 \%, \max 1830 \mathrm{c} / \mathrm{kg}$	1	0	0	0.0%	0.0\%	22.0%
12	$1.8 \mathrm{c} / \mathrm{kg}, \max 15 \%$	1	4,963	5	0.1\%	7.6\%	7.6%	99. 22% or $33 \%, \max 2880 \mathrm{c} / \mathrm{kg}$	2	81	12	15.3%	22.0\%	22.0%
13	10% or $55 \mathrm{c} / \mathrm{kg}$ less 90%	1	14	1	10.0%	5.8\%	5.8\%	100.22% or $33 \%, \max 960 \mathrm{c} / \mathrm{kg}$	1	1,435	33	23.5\%	22.0\%	22.0\%
14	100 c/u	1	0	0	0.0\%	0.0\%	0.0\%	101. 22%, max $1700 \mathrm{c} / \mathrm{kg}$	1	2,584	388	15.0\%	22.0\%	22.0%
15	$10 \mathrm{c} / \mathrm{kg}$	1	545	1	0.1\%	0.1\%	0.1%	102.22%, max $700 \mathrm{c} / \mathrm{kg}$	69	148,740	16,103	10.8 \%	22.0\%	2.0\%
16	$110 \mathrm{c} / \mathrm{kg}$ less 80%	1	829	0	0.0\%	6.4\%	6.4\%	103. 22%, max $910 \mathrm{c} / \mathrm{kg}$	3	905	127	14.0\%	22.0\%	22.0\%
17	$110 \mathrm{c} / \mathrm{kg} \mathrm{net}$	1	17,289	6,919	40.0\%	0.2%	0.2%	$104.22 .2 \mathrm{c} / \mathrm{kg}$	1	0	0	0.0\%	0.0\%	0.0\%
18	$118.9 \mathrm{c} / \mathrm{kg}$	4	12,383	6,372	51.5\%	72.1\%	58.9\%	$105.220 \mathrm{c} / \mathrm{kg}$	2	61,702	26,181	42.4\%	76.8%	57.4\%
19	11c/li	3	42,894	974	2.3%	2.8%	2.2\%	106.23.1c/kg	1	2,216	1	0.1\%	8.4\%	8.4\%
20	$12.5 \mathrm{c} / \mathrm{kg}$	1	2,239	0	0.0\%	5.6%	5.6%	107.25% or $150 \mathrm{c} / \mathrm{kg}$	6	35	0	0.0\%	22.6\%	8%
21	136c/li	7	89,864	49	0.1\%	8.4\%	6.3%	108.25% or $200 \mathrm{c} / \mathrm{kg}$	11	6,225	79	1.3%	21.7\%	14.3 \%
22	15% or $860 \mathrm{c} / \mathrm{kg}$ less 85%	2	293,122	2,142	0.7\%	10.5\%	10.5\%	109.25% or $70 \mathrm{c} / \mathrm{kg}$	26	22,281	158	0.7%	19.8\%	9.6%
23	15% plus $200 \mathrm{c} / \mathrm{u}$	3	0	0	0.0\%	0.0\%	0.0\%	110. 25% plus 1.04c/fi	1	5,206	1,284	24.7\%	25.2\%	25.2%
24	15% plus 50 c/u	2	0	0	0.0\%	0.0\%	0.0\%	111. $25.3 \mathrm{c} / \mathrm{kg}$	1	32	2	5.5\%	0.4\%	0.4\%
25	$15.103 \mathrm{c} / \mathrm{kg}$	2	213,883	13,865	6.5%	17.9\%	14.3\%	112. $26.9 \mathrm{c} / \mathrm{kg}$	1	563,124	38,701	24.6%	34.2%	34.2 \%
26	150c/u	2	0	0	0.0\%	0.0\%	0.0\%	113. $3.3 \mathrm{c} / \mathrm{li}$	1	666	9	1.3%	0.5\%	0.5\%
27	154c/li	8	397,39	3,848	1.0\%	5.6%	7.0\%	114. $3.6 \mathrm{c} / \mathrm{kg}, \max 25 \%$	1	56	0	0.6%	12.8\%	12.8 \%
28	$16.5 c / \mathrm{kg}, \max 25 \%$	1	121	1	0.5\%	12.8\%	12.8 \%	115.30% or $4.5 \mathrm{c} / \mathrm{kg}$	3	3,514	709	20.2\%	15.2\%	15.2\%
29	$160 \mathrm{c} / \mathrm{kg}$	1	215,920	50	0.0\%	18.9%	18.9%	116. 30% or $500 \mathrm{c} / 2 \mathrm{u}$	6	221,600	39,767	17.9\%	23.3\%	25.3\%
30	$17 \mathrm{c} / \mathrm{kg}$	1	437	19	4.3\%	4.3\%	4.3\%	117. 30% or $7.25 \mathrm{c} / \mathrm{kg}$	2	617	185	30.0\%	15.4\%	7.7\%
31	$2.25 \mathrm{c} / \mathrm{kg}$	2	32	0	0.1\%	. 1%	0.0\%	118.317c/li of absolute alcotiol	2	20	86	42.7\%	43.1\%	56.6\%
32	$2.4 \mathrm{c} / \mathrm{kg} \mathrm{net}$	3	14,263	13	0.1\%	.1\%	0.1%	119. $325 \mathrm{c} / \mathrm{kg}$, max 39%	1	1,639	463	28.2%	39.0\%	39.0\%
33	$2.75 \mathrm{c} / \mathrm{kg}$	8	8	0	0.0\%	0.0\%	0.0\%	120. 35% or $500 c / 2 u$	4		156,653	30.3\%	29.3\%	27.2\%
34	20% or $215 \mathrm{c} / \mathrm{kg}$ less 80%	1	805	161	20.0\%	11.2\%	11.2\%	121.35c/no	1	0	0	1.1\%	0.0\%	0.0\%
35	$21.2 \mathrm{c} / \mathrm{kg}$	1	94	1	0.6\%	2.9\%	2.9%	$122.3 \mathrm{c} / \mathrm{kg}$	2	1,983	8	0.4\%	0.4\%	0.9\%
36	22% or $30 \%, \max 1000 \mathrm{c} / \mathrm{kg}$	188	384,911	57,899	15.0\%	22.0\%	22.0\%	$123.4 .15 \mathrm{c} / \mathrm{kg}$	7	41,794	501	1.2\%	1.2\%	1.0\%
37	22% or $30 \%, \max 1030 \mathrm{c} / \mathrm{kg}$	1	55	14	25.5\%	22.0\%	22.0%	124.4.36c/ii	1	105,405	1,234	1.2\%	0.4\%	0.4\%
38	22% or $30 \%, \max 1040 \mathrm{c} / \mathrm{kg}$	62	91,057	15,970	17.5\%	22.0\%	22.0\%	125.40% or $120 \mathrm{c} / \mathrm{u}$	3	291	76	26.2\%	21.0\%	20.8\%
39	22% or 30%, max $1060 \mathrm{c} / \mathrm{kg}$	5	7,126	1,635	22.9\%	22.0\%	22.0\%	126.40% or $60 \%, \max 10700 \mathrm{c} / \mathrm{kg}$	2	993	510	51.3%	40.0\%	40.0\%
40	22% or $30 \%, \max 1090 \mathrm{c} / \mathrm{kg}$	1	3	1	22.0\%	22.0\%	22.0%	127.40% or $60 \%, \max 11520 \mathrm{c} / \mathrm{kg}$	2	8,400	2,556	30.4\%	40.0\%	40.0\%
41	22% or $30 \%, \max 1100 \mathrm{c} / \mathrm{kg}$	15	13,576	2,740	20.2\%	22.0\%	22.0\%	128.40% or $60 \%, \max 1630 \mathrm{c} / \mathrm{kg}$	1	4,142	911	22.0\%	40.0\%	40.0\%
42	22% or 30%, max $1135 \mathrm{c} / \mathrm{kg}$	43	20,223	3,774	18.7\%	22.0\%	22.0%	129.40% or 60%, max 190 c each	2	504	240	47.6\%	40.0\%	40.0%
43	22% or $30 \%, \max 1145 \mathrm{c} / \mathrm{kg}$	4	5,698	1,454	25.5\%	22.0\%	22.0\%	130.40% or $60 \%, \max 190 \mathrm{c} / \mathrm{kg}$	1	15	6	40.1\%	40.0\%	40.0%
44	22% or $30 \%, \max 1150 \mathrm{c} / \mathrm{kg}$	16	8,880	1,713	19.3%	22.0\%	22.0\%	131. 40% or $60 \%, \max 20500 \mathrm{c} / \mathrm{kg}$	1	15,603	7,146	45.8\%	40.0\%	40.0%
45	22% or $30 \%, \max 1230 \mathrm{c} / \mathrm{kg}$	4	620	8	20.7\%	22.0\%	22.0\%	132. 40% or $60 \%, \max 270 \mathrm{c} / \mathrm{pr}$	4	4,774	555	11.6\%	40.0\%	40.0%
46	22% or $30 \%, \max 1280 \mathrm{c} / \mathrm{kg}$	70	198,401	32,367	16.3%	22.0\%	22.0\%	133.40% or $60 \%, \max 3380 \mathrm{c} / \mathrm{kg}$	13	48,117	18,066	37.5\%	40.0\%	40.0\%
47	22% or 30%, max $1300 \mathrm{c} / \mathrm{kg}$	15	15,181	2,893	19.1\%	22.0\%	22.0\%	134.40% or $60 \%, \max 3460 \mathrm{c} / \mathrm{kg}$	1	537	223	41.4%	40.0\%	40.0\%
48	22% or 30%, max 1320c/kg	8	41,686	7,539	18.1\%	22.0\%	22.0%	135.40% or $60 \%, \max 3590 \mathrm{c} / \mathrm{kg}$	20	88,486	37,570	42.5\%	40.0\%	40.0\%
49	22% or $30 \%, \max 1330 \mathrm{c} / \mathrm{kg}$	1	465	24	5.2%	22.0\%	22.0\%	136.40% or 60%, max $4225 \mathrm{c} / \mathrm{kg}$	20	67,089	19,986	29.8\%	40.0\%	40.0\%
50	22% or $30 \%, \max 1410 \mathrm{c} / \mathrm{kg}$	51	63,414	11,545	18.2 \%	22.0\%	22.0%	137.40% or $60 \%, \max 4800 \mathrm{c} / \mathrm{kg}$	57	387,45	125,700	32.4\%	40.0\%	40.0%
51	22% or 30%, max $1430 \mathrm{c} / \mathrm{kg}$		38,843	7,353	18.9%	22.0\%	22.0\%	138.40% or $60 \%, \max 5000 \mathrm{c} / \mathrm{kg}$	3	26,978	13,555	50.2\%	40.0\%	40.0%
52	22% or $30 \%, \max 1500 \mathrm{c} / \mathrm{kg}$	1	18,523	4,887	26.4\%	22.0\%	22.0\%	139.40% or $60 \%, \max 5090 \mathrm{c} / \mathrm{kg}$	3	1,400	564	40.3\%	40.0\%	40.0\%
53	22% or 30%, max $1540 \mathrm{c} / \mathrm{kg}$	5	35,541	6,916	19.5%	22.0\%	22.0%	140.40% or $60 \%, \max 5280 \mathrm{c} / \mathrm{kg}$	67	431,839	158,337	36.7%	40.0\%	40.0%
54	22% or 30%, max $1550 \mathrm{c} / \mathrm{kg}$	1	777	128	16.5%	22.0\%	22.0\%	141. 40% or $60 \%, \max 5740 \mathrm{c} / \mathrm{kg}$	4	1,762	555	31.5%	40.0\%	40.0\%
55	22% or $30 \%, \max 1555 \mathrm{c} / \mathrm{kg}$	15	65,424	12,575	19.2 \%	22.0\%	22.0\%	142.40% or $60 \%, \max 5810 \mathrm{c} / \mathrm{kg}$	8	1,480	381	25.8\%	40.0\%	40.0%
56	22% or $30 \%, \max 1600 \mathrm{c} / \mathrm{kg}$	3	1,430	322	2.5\%	22.0	22	143.40% or $60 \%, \max 6105 \mathrm{c} / \mathrm{kg}$	2	200	10	51.6\%	40.0\%	40.0%
57	22% or $30 \%, \max 1650 \mathrm{c} / \mathrm{kg}$	2	27,947	5,783	20.7\%	22.0\%	22.0\%	144.40% or $60 \%, \max 6865 \mathrm{c} / \mathrm{kg}$	7	40,418	14,475	35.8\%	40.0\%	40.0\%
58	22% or $30 \%, \max 1660 \mathrm{c} / \mathrm{kg}$	14	55,765	9,463	17.0\%	22.0\%	22.0\%	145.40% or $60 \%, \max 7180 \mathrm{c} / \mathrm{kg}$	7	492	222	45.1\%	40.0\%	40.0%
59	22% or $30 \%, \max 1665 c / \mathrm{kg}$	3	7,823	1,698	21.7\%	22.0\%	22.0\%	146.40% or $60 \%, \max 7500 \mathrm{c} / \mathrm{kg}$	3	3,518	1,006	28.6\%	40.0\%	40.0\%
60	22% or $30 \%, \max 1730 \mathrm{c} / \mathrm{kg}$	3	7,035	1,439	20.5\%	22.0\%	22.0\%	147.40% or $60 \%, \max 8000 \mathrm{c} / \mathrm{kg}$		79,816	23,779	29.8\%	40.0\%	40.0\%
61	22% or 30%, max $1760 \mathrm{c} / \mathrm{kg}$	1	6,702	186	2.8\%	22.0\%	22.0\%	148.40% or $60 \%, \max 8160 \mathrm{c} / \mathrm{kg}$	3	358	157	43.9\%	40.0\%	40.0\%
62	22% or 30%, max $1790 \mathrm{c} / \mathrm{kg}$	4	2,805	534	19.0\%	22.0\%	22.0\%	149.40% or $60 \%, \max 8975 \mathrm{c} / \mathrm{kg}$	1	182	79	43.3\%	40.0\%	40.0%
63	22% or $30 \%, \max 1830 \mathrm{c} / \mathrm{kg}$	60	138,794	25,182	18.1\%	22.0\%	22.0\%	150.40% or $60 \%, \max 8980 \mathrm{c} / \mathrm{kg}$	21	14,007	5,119	36.6%	40.0\%	40.0%
64	22% or 30%, max 1920c/kg	1	387	93	24.1\%	22.0\%	22.0\%	151. 40% or 60%, max $9700 \mathrm{c} / \mathrm{kg}$	5	27,475	12,734	46.4\%	40.0\%	40.0\%
65	22% or 30%, max 1980 $/ \mathrm{kg}$	1	1,037	135	13.0\%	22.0\%	22.0\%	152.40% or $60 \%, \max 9780 \mathrm{c} / \mathrm{kg}$	1	2,460	1,141	46.4%	40.0\%	40.0\%
66	22% or 30%, max $2000 \mathrm{c} / \mathrm{kg}$	1	512	119	23.3\%	22.0\%	22.0\%	153.40% plus $40.3 \mathrm{c} / \mathrm{kg}$	1	312	62	19.8 \%	73.0\%	73.0\%
67	22% or 30%, max $2020 \mathrm{c} / \mathrm{kg}$	95	157,549	30,569	19.4 \%	22.0\%	22.0\%	$154.40 \%, \max 3000 \mathrm{c} / \mathrm{kg}$	32	119,705	29,928	25.0\%	40.0\%	40.0\%
68	22% or 30%, max $2080 \mathrm{c} / \mathrm{kg}$	1	843	84	10.0\%	22.0\%	22.0\%	$155.400 \mathrm{c} / \mathrm{kg}$	2	115,814	17,776	15.3\%	50.4\%	28.2%
69	22% or $30 \%, \max 2160 \mathrm{c} / \mathrm{kg}$	20	18,810	3,874	20.6\%	22.0\%	22.0\%	$156.40 \mathrm{c} / \mathrm{kg}$	1	261,278	4,644	1.8%	20.5\%	20.5\%
70	22% or 30%, max $2240 \mathrm{c} / \mathrm{kg}$	1	906	62	6.8%	22.0\%	22.0\%	$157.450 \mathrm{c} / \mathrm{kg}$	8	174,569	23,538	13.5\%	44.4\%	57.8\%
71	22% or 30%, max $2296 \mathrm{c} / \mathrm{kg}$	1	549	107	19.5%	22.0\%	22.0\%	$158.4 \mathrm{c} / \mathrm{kg}$	4	36,752	76	0.2%	0.2\%	0.3\%
72	22% or 30%, max $2305 \mathrm{c} / \mathrm{kg}$	10	9,143	1,588	17.4 \%	22.0\%	22.0\%	159. $5.5 \mathrm{c} / \mathrm{kg}$	14	18,751	36	0.2\%	0.2%	0.5\%
73	22% or 30%, max $2350 \mathrm{c} / \mathrm{kg}$	14	12,136	1,464	12.1\%	22.0\%	22.0%	$160.50 .3 \mathrm{c} / \mathrm{kg}$	1	45	2	3.8%	3.8%	3.8\%
74	22% or 30%, max $2355 \mathrm{c} / \mathrm{kg}$		579	124	21.4\%	22.0\%	22.0\%	161. $500 \mathrm{c} / \mathrm{kg}$	8	119,401	22,697	19.0\%	35.7\%	24.2\%
75	22% or 30%, max $2380 \mathrm{c} / \mathrm{kg}$	48	22,403	1,390	6.2%	22.0%	22.0\%	$162.50 \mathrm{c} / \mathrm{no}$	1		0	0.0\%	31.8%	31.8%
76	22% or 30%, max $2425 c / \mathrm{kg}$	1	160	19	11.8 \%	22.0\%	22.0%	$163.55 .5 \mathrm{c} / \mathrm{kg}$	1	9,075	1,218	13.4\%	13.8%	13.8 \%
77	22% or 30%, max $2440 \mathrm{c} / \mathrm{kg}$	2	12,963	2,523	19.5\%	22.0\%	22.0%	$164.56 .7 \mathrm{c} / \mathrm{kg}$	1	4	0	4.4\%	4.4\%	4.4\%
78	22% or 30%, max $2568 c / \mathrm{kg}$	2	11,469	56	0.5\%	22.0\%	22.0\%	$165.57 .7 \mathrm{c} / \mathrm{kg}$	1	275	18	6.7\%	6.7\%	6.7\%
79	22% or 30%, max $2570 \mathrm{c} / \mathrm{kg}$	55	17,704	1,433	8.1\%	22.0\%	22.0\%	$166.5 \mathrm{c} / \mathrm{kg}$	7	98,483	125	0.1\%	0.3%	0.4\%
80	22% or $30 \%, \max 2640 \mathrm{c} / \mathrm{kg}$	42	11,441	2,185	19.1\%	22.0\%	22.0\%	167. 5 c/li	1	4,233	23	0.6%	0.6\%	0.6\%
81	22% or 30%, max $2690 \mathrm{c} / \mathrm{kg}$	16	2,624	490	18.7\%	22.0\%	22.0\%	168. $6.6 \mathrm{c} / \mathrm{kg}, \max 25 \%$	1	113	1	0.5\%	12.8\%	12.8%
82	22% or 30%, max $2880 \mathrm{c} / \mathrm{kg}$	16	18,718	2,588	13.8 \%	22.0\%	22.0\%	169.60% or $2500 \mathrm{c} / \mathrm{kg}$	2	31,072	1,994	6.4%	60.0\%	60.0\%
83	22\% or 30%, max $2960 \mathrm{c} / \mathrm{kg}$	15	5,690	933	16.4%	22.0\%	22.0%	$170.6 \mathrm{c} / \mathrm{kg}$	58	227,82	969	0.4%	0.5\%	0.3%
84	22% or $30 \%, \max 3070 \mathrm{c} / \mathrm{kg}$	5	6,006	1,399	23.3\%	22.0\%	22.0\%	171. $77 \mathrm{c} / \mathrm{kg}$	1	2,729	37	1.4\%	22.1\%	22.1\%
85	22% or 30%, max $3170 \mathrm{c} / \mathrm{kg}$	31	1,698	200	11.8%	22.0\%	22.0%	$172.78 \mathrm{c} / \mathrm{kg}$	1	350	50	14.3%	25.3\%	25.3\%
86	22% or 30%, max $3200 \mathrm{c} / \mathrm{kg}$	1	7,607	298	3.9%	22.0\%	22.0\%	$173.8 \mathrm{c} / \mathrm{kg}$	6	17,659	230	1.3\%	1.5\%	0.9\%
87	22% or $30 \%, \max 3425 \mathrm{c} / \mathrm{kg}$	4	7,660	669	8.7\%	22.0\%	22.0\%	$1774.9 .2 \mathrm{c} / \mathrm{kg}$	1	545	2	0.3\%	0.4\%	0.4\%

Source: DTI
\mathcal{A} consolidated view on the ad-valorem equivalents of other than ad-valorem tariffs is shown in the next table. \mathcal{N} (ote that the number of $\mathcal{H S} 8$ commodity lines with specific, mixed or compound tariffs amounts to almost 2000, as can be seen in row 10. Most of the $\mathcal{H S} 8$ commodity lines for which ad-valorem equivalents have been calculated fall in the $20 \%-30 \%$ category (see row 3), followed by the ad-valorem equivalent tariff band of 40% or more (see row 1) and the 0% - 5% band with about 6% of the $\mathcal{H} S$ commodity lines (see row 7).

Table 10: Consolidated tariff analysis of ad-valorem equivalents of other-than-ad-valorem-tariffs of the guly 2000 tariff schedule and associated imports for the 2000 (current Rand values)

	\# of $\mathcal{H S}$ \& lines	\% of \# of lines	Imports 2000	\% imports 2000
	1	2	3	4
1 tariff $\geq 40 \%$	295	15.2%	1,706,893,493	22.6\%
230% tariff $<40 \%$	10	0.5\%	711,692,907	9.4\%
3 20\% stariff $<30 \%$	1,104	56.9%	3,139,638,416	41.5%
415% stariff $<20 \%$	16	0.8%	228,638,743	3.0%
510% stariff $<15 \%$	13	0.7%	219,918,439	2.9%
65% tariff $<10 \%$	15	0.8%	575,691,938	7.6\%
$70 \% \leq$ tariff $<5 \%$	122	6.3%	984,213,102	13.0%
$8 \quad 0 \%$	3	0.2%	326	0.0\%
9 zero import lines for which no $\mathcal{A V E}$ is available	363	18.7\%	0	0.0%
10 Totalimports specific, etc	1,941	100.0%	7,566,687,364	100.0\%

Source: $\mathcal{D T}$ I and own calculations, see \mathcal{T} able 9

In terms of value of imports it can be seen in the second last entry of the last row that during 2000 about R7. 5 Gillion was imported by South Africa that faces non ad-valorem duties. The distribution of the value of imports across the chosen bands of ad-valorem equivalents mirrors that of the number of $\mathcal{H S} 8$ commodity lines, albe it in a more compressed way. The ad-valorem equivalent tariff 6and with the fighest value of imports remains the 20%. 30% range, which accounts for almost 40% of the value of non-ad-valorem imports during 2000 , followed by the top 6and with about 20% and the Gottom 6and with about 13%.
\mathcal{A} consolidation of the ad-valorem and ad-valorem equivalent tariffs is shown in the next table. With specific, mixed and compound rates accounting for about 25% of the total number of $\mathcal{H S} 8$ commodity lines, the ad-valorem equivalent conversion is expected to have a significant impact on the distribution of $\mathcal{H S} \boldsymbol{8}$ commodity lines across the broad 6ands identified in Tables 6 and 10 . The 20% - 30% band now accounts for more than 22% of the $\mathcal{H S} 8$ commodity lines, compared to almost 9% Gefore the integration of the ad-valorem equivalents. Similarly, the top band now represents about 4.5% compared to 1% before and the bottom 6and (0% - 5%) captures 122 lines (or 1.6%) compared to only $5 \mathcal{H S}$ \& lines previously.

Table 11: Consolidated tariff analysis of ad-valorem and ad-valorem equivalents tariff rates of the \ln uly 2000 tariff schedule and associated imports for 2000 (current Rand values)

Source: $\mathcal{D T}$ I and own calculations, see $\mathcal{T a b l e} 10$ and $\mathcal{T a b l e} 6$

Given that the value of imports for 2000 associated with specific, mixed and compound rates only amounted to about 4% of the total imports over this period, the final distribution compared to Table 6 is not much different, except for the top Gand, which now accounts for more than 4% compared to 3.5% Gefore the application of the ad-valorem equivalent conversion, the $20 \%-30 \%$ Gand with 7.0% compared 5.4% and the 0% to 5% and with 0.6% compared to 0% respectively.

We close this section with a brief look at those $\mathcal{H S}$ \& commodity lines that have the highest ad-valorem equivale nt tariffs. It can be seen that the highest ad-valorem equivalents are recorded for processed food, in various stages, and textiles.
\mathcal{T} able 12: $\mathcal{H S} 8$ lines with ad-valorem equivalent tariffs of more than 40% (Imports in current Rand values) based on the Iuly 2000 schedule and 2000 imports

	HS 8 code	$\mathcal{H S}$ description (truncated at 90 characters	original rate	A $\mathcal{V E}$	Imports
	04029100	Dairy produce; 'irds' eqgs; natural honey; edible products of animal origin, not else ewhere	$450 \mathrm{c} / \mathrm{kg}$	127.7\%	1,057
	22071000	Beverages, spirits and vinegar. Undenatured ethylalcoholof an alcoholic strength by volume of	$317 \mathrm{c} / \mathrm{li}$ of absolute alcofol	102.7\%	1,414
	04029900	Dairy produce; 'irds' eggs; naturalhoney; edible products of animal origin, not else where	$450 \mathrm{c} / \mathrm{kg}$	\%	2,336,9 19
	17019100	Sugars and sugar confectionery Cane or beet sugar and chemically pure sucrose, in solid for	$118.9 \mathrm{c} / \mathrm{kg}$	86.3\%	6,407,847
	020714	Meat and edible meat offalMeat and edible offal, of the poultry of heading no.0 1.05, fresh,	$2200 / \mathrm{kg}$	77.6\%	6,552,750
	17011100	Sugars and sugar confectionery Cane or beet sugar and che mically pure sucrose, in solid form.	$118.9 \mathrm{c} / \mathrm{kg}$	77.4\%	2,474,582
7	11010000	Products of the miling industry; malt; starches; inulin; wheat gluten Wheat or meslin flour.	40% plus $40.3 \mathrm{c} / \mathrm{kg}$	73.0\%	312,330
	04041000	$D_{\text {Dairy }}$ produce; Girds' eggs; natural honey; edible products of animalorigin, not else where	$450 \mathrm{c} / \mathrm{kg}$	62.	34,688,627
9	63090017	Other made up textile articles; sets; worn clothing and worn textile articles; rags Worn clothing	60% or $2500 \mathrm{c} / \mathrm{kg}$	60.	21,802,777
10	63090013	Other made up textile articles; sets; worn clothing and worn textile articles; rags Worn clothing	60% or $2500 \mathrm{c} / \mathrm{kg}$	\%	9,269,262
	0902	Coffee, tea, mate and spices Tea, whether or not flavoured - other blacktea (fermented) and	$400 \mathrm{c} / \mathrm{kg}$	\%	51,583
12	04051000	Dairy produce; Girds' eggs; natural honey; edible products of animal origin, not else where	$500 \mathrm{c} / \mathrm{kg}$	48.9\%	53,655,921
13	04059000	Dairy produce; Girds' eggs; natural honey; edible products of animal origin, not else where	$500 \mathrm{c} / \mathrm{kg}$	46.7\%	2,226,166
14	17019900	Sugars and sugar confectionery Cane or beet sugar and che emically pure sucrose, in solid form.	$118.9 \mathrm{c} / \mathrm{kg}$	43.9\%	3,133,051
15	04039000	Dairy produce; Girds' eggs; naturalhoney; edible products of animal origin, not else where	$450 \mathrm{c} / \mathrm{kg}$	42.6\%	16,804,488
16	62034200	Articles of appareland clothing accessories, not knitted or crocheted Men's or Goys' suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0	118,382,492
17	62052000	Articles of apparel and clothing accessories, not knitted or crocheted Men's or 6oys'shirts.	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	77,298,465
18	62034300	Articles of appareland clothing accessories, not knitted or crocheted Men's or 6oys'suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0\%	54,171,377
19	61091000	Articles of appareland clothing accessories, Knitted or crocheted T.shirts, single ts and other	40% or 60%, max, $8000 \mathrm{c} / \mathrm{kg}$	40.0\%	46,408,424
20	62053000	Articles of appareland clothing accessories, not knitted or crocheted Men's or 6oys' sfirts.	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	42,791,689
	61113000	Articles of appareland clothing accessories, Knitted or crocheted Babies' garments and clothing	40% or 60%, max, $3590 \mathrm{c} / \mathrm{kg}$	40.0\%	$36,701,236$
22	61099000	Articles of appareland clothing accessories, knitted or crocketed T.shirts, singlets and other	40% or 60%, max, $8000 \mathrm{c} / \mathrm{kg}$	40.0\%	33,407,384
23	62059000	$\mathfrak{A r t i c l e s}$ of appareland clothing accessories, not knitted or crocheted Men's or 6oys' shirts..	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	29,808,993
24	62046200	$\mathfrak{A r t i c l e s ~ o f ~ a p p a r e l a n d ~ c l o t h i n g ~ a c c e s s o r i e s , ~ n o t ~ k n i t t e d ~ o r ~ c r o c h e t e d ~ W o m e n ' s ~ o r ~ g i r l s ' ~ s u i t s , ~}$	40% or 60%, max, $5280 \mathrm{c} / \mathrm{Kg}$	40.0\%	29,418,237
25	61112000	Articles of appareland clotfing accessories, knitted or crocheted Babies' garments and clothing	40% or 60%, max, $3590 \mathrm{c} / \mathrm{kg}$	0.0\%	26,617,426
26	62019300	Articles of appareland clothing accessories, not knitted or crocketed Men's or 6oys' overcoats,	40% or $60 \%, \mathrm{max}, 4225 \mathrm{c} / \mathrm{kg}$	\%	26,509,864
27	62069000	Articles of appareland clothing accessories, not knitted or crocheted Women's or girls' blouses,	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	25,999,340
28	62046300	\mathfrak{A} aricles of appareland clothing accessories, not knitted or crocheted Women's or girls'suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0\%	23,010,361
29	61121200	Articles of appareland clothing accessories, Knited or crocketed Tracksuits, ski suits and	40\% or 60%, max, $5000 \mathrm{c} / \mathrm{kg}$	40.0\%	22,461,178
30	61051000	Articles of appareland clothing accessories, Knitted or crocheted Men's or boys' sfirts, knitted	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	22,312,073
31	62064000	$\mathfrak{A r t i c l e s ~ o f ~ a p p a r e l a n d ~ c l o t h i n g ~ a c c e s s o r i e s , ~ n o t ~ k n i t t e d ~ o r ~ c r o c h e t e d ~ W o m e n ' s ~ o r ~ g i r l s ' ~ b l o u s e s , ~}$	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	22,280,553
32	6206	Articles of appareland clothing accessories, not knitted or crocheted Women's or girls' blouses,	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	0.0\%	22,098,754
33	61103020	Articles of appareland clothing accessories, knitted or crocheted Jerseys, pullovers, cardigans,	40% or 60%, max, $6865 \mathrm{c} / \mathrm{kg}$	40.0\%	21,958,101
34	61052000	$\mathfrak{A r t i c l e s ~ o f ~ a p p a r e l a n d ~ c l o t h i n g ~ a c c e s s o r i e s , ~ K n i t t e d ~ o r ~ c r o c h e t e d ~ M e n ' s ~ o r ~ G o y s ' s f i r t s , ~ k n i t t e d ~}$	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	20,601,373
35	62034900	Articles of appareland clothing accessories, not knitted or crocheted Men's or 6oys' suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$		19,418,436
36	61143000	Articles of appareland clothing accessories, Knitted or crocheted Other garments, knitted or	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	19,364,670
37	61059000	Articles of apparel and clothing accessories, knitted or crocheted Men's or Goys' sfirts, knitted	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	18,201,813
38	63026090	Other made up textile articles; sets; worn clothing and worn textile articles; rags Bed linen,	$40 \%, \mathrm{max}, 3000 \mathrm{c} / \mathrm{kg}$	40.0\%	16,413,532
39	61082200	Articles of appareland clothing accessories, knitted or crocheted Women's or girls' slips,	40% or 60%, max, $9700 \mathrm{c} / \mathrm{kg}$	40.0\%	16,181,695
40	62121000	Articles of appareland clothing accessories, not knitted or crocheted Brassieres, girdles,	40% or 60%, max, $20500 \mathrm{c} / \mathrm{kg}$	40.0\%	15,603,091
41	63022100	Other made up textile articles; sets; worn clothing and worn textile articles; rags Bed linen,	$40 \%, \max , 3000 \mathrm{c} / \mathrm{kg}$	40.0\%	15,253,335
42	61034300	Articles of appareland clothing accessories, Knitted or crocheted Men's or 6oys' suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0\%	$15,087,270$
43	62029300	Articles of appareland clothing accessories, not knitted or crocheted Women's or girls'	40% or 60%, max, $4225 \mathrm{c} / \mathrm{kg}$	40.0\%	14,273,245
44	62011990	Articles of appareland clothing accessories, not knitted or crocketed Men's or 6oys' overcoats,	40% or 60%, max, $3380 \mathrm{c} / \mathrm{kg}$	40.0\%	13,222,881
45	61031900	Articles of appareland clothing accessories, Knitted or crocheted Men's or 6oys' suits,	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0\%	13,021,944
46	62093000	Articles of appareland clothing accessories, not knitted or crocheted Babies' garments and	40% or 60%, max, $3590 \mathrm{c} / \mathrm{kg}$	40.0\%	12,441,745
47	63023200	Other made up textile articles; sets; worn clothing and worn textile articles; rags Bed linen,	40\%, max, $3000 \mathrm{c} / \mathrm{kg}$	40.0\%	12,078,463
48	62113390	Articles of appareland clothing accessories, not knitted or crocheted Tracksuits, skisuits and	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	40.0\%	11,753,381
49	62044300	$\mathfrak{A r t i c l e s ~ o f ~ a p p a r e l a n d ~ c l o t h i n g ~ a c c e s s o r i e s , ~ n o t ~ k n i t t e d ~ o r ~ c r o c h e t e d ~ W o m e n ' s ~ o r ~ g i r l s ' ~ s u i t s , ~}$	40% or 60%, max, $5280 \mathrm{c} / \mathrm{kg}$	40.0\%	11,328,593
	61142000	Articles of appareland clothing accessories, Knitted or crocketed Other garments, ¢nitted or	40% or 60%, max, $4800 \mathrm{c} / \mathrm{kg}$	0.	10,843,561

Source: $\mathcal{D I}$ I and own calculations

6) Tariffs by Sector

In order to link the trade and tariff analysis to industrial policy issues it is usefulto try and express the tariffs calculated in section 3 above in terms of sectors. What is needed here is a bridge from the $\mathcal{H} S$ nomenclature to the South Africa Standard Industrial Classification (SIC), which is available in unpublished format from \mathcal{S} tats $\mathcal{S} \mathcal{A}$. $\mathcal{B e}$ low we show the tariff structure for the three main sectors of the South $\mathcal{A} f r i c a n$ economy for g uly 2000 and $\mathcal{M a r c h}$
2001. This can be compared to the $\mathcal{W} \mathcal{T O}$ Trade Policy Review (1998:44), which offers a tariff structure in a similar
format for the year 1997 (presumably for ad-valorem tariffs only).

		$\begin{aligned} & \text { \# of } \\ & \text { lines } \end{aligned}$	imports (R.million curr pr)	$\begin{gathered} \text { imports } \\ \% \end{gathered}$	weighted average	unwe igh. ted average	unwe igh . ted average	unwe igh . ted average	standard deviation	standard de viation	standard deviation	coeff of variation	coeff of variation	coeff of variation
		2000	2000	2000	2000	1997	2000	2001	1997	2000	2001	1997	2000	2001
1	agriculture	295	1,459	0.8%	1.4\%	5.6\%	4.2%	4.0\%	8.9%	7.5%	7.2%	1.59	1.76	1.81
2	mining	107	25,559	14.5%	0.0%	1.4%	1.2%	1.4 \%	3.4%	3.2%	3.7%	2.47	2.78	2.63
3	manufacturing	5,479	149,539	84.7\%	8.6\%	15.6%	6.7%	6.7%	18.0%	9.6%	9.4\%	1.15	1.42	1.40
4	gas	2	7	0.0%	0.0%		0.0%	0.0%		0.0\%	0.0%		na	na
5	total	5,883	176,564	100.0%	7.3%	15,1\%	6.5%	6.5%	17.8\%	9.4\%	9.3\%	1.18	1.45	1.44

Source: $\mathcal{D T}$ I, Customs \& Excise, $\mathcal{W T O}(1998: 44)$ and own calculations, note: non-ad-valorem tariffs are excluded

Our benchmark can be found in columns 5-7, where we show the unweighted average tariff of 9 une 1997, g uly 2000 and March 2001. It can be seen that further reduction of tariffs has been achieved across all sectors identified but most notably in the manufacturing sector, where the unweighted average tariff has dropped from 16% to 7%. The total unwe ighted average tariff has over the same period decline d from 15% to 6.5%. Although the standard deviations have also declined across all sectors, the coefficient of variation, which normalises the standard deviation with respect to the unweighted average has increased slightly. This is the result of the continuing decline in the unweighted average tariff, which causes the denominator of the coefficient of variation to become smaller, and this is not matched by an accompanying decline in the standard deviation. In other words, the unweighted average tariff has decline d more than its standard deviation, hence the ratio of the latter over the former has increased.

A more interesting way of analysing the tariff structure is according to the degree of processing, as is presented by the $\mathcal{W T O}$ (1998: 44). However, the $\mathcal{W T O}$ does not reveal the bridge to aggregate the $\mathcal{H} S$ nomenclature up according to the degree of processing and merely refers to "data provided by the South African authorities". This is clearly an area that can be considered for further research.

Comparisons of 1997 and 2000 tariff structures with the $\mathcal{W T O}(1998)$ are possible at more detailed SIC level, although this is not possible for all SIC codes as the $\mathcal{W T O}(1998)$ disaggregation is based on SIC version 3 , while our analysis is based on the more current SIC version 5.

Table 14: Tariff Structure for SICv5, Iuly 2000 and I une 1997, with imports for the year 2000

Table 14 (cont): Tariff Structure for SICv5, guly 2000 and \mathcal{I} un 1997, with imports for the year 2000

	SICv5 code SICV5 description		$\begin{gathered} 1 \\ \text { guloo } \\ \text { \# lines } \end{gathered}$	$\underset{\substack{2 \\ \sigma_{1} \\ \hline \\ \#}}{ }$	$\begin{gathered} 3 \\ \begin{array}{l} 3 \\ \text { Iun } \\ \text { Import value } \end{array} \\ \hline \end{gathered}$	\% imp	$\begin{gathered} 5 \\ y_{4}<00 \\ \mathcal{A} v \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 9 \operatorname{cng}^{2} 97 \end{gathered}$	$\underset{g_{\operatorname{Min}}^{7}}{7}$	$\begin{gathered} 8 \\ \operatorname{gul00} \\ \operatorname{Max} \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \text { gul00 } \\ \text { St dev } \end{gathered}$	$\begin{gathered} 10 \\ \text { gung } 7 \\ \text { St dev } \end{gathered}$
100	3429	Manufacture of other non-metalfic mineral products nec	19	0.3%	262.379	0.1%	7.1\%		0.0%	15.0%	7.5%	
101	35	Manufacture of Gasic me tals, fabricated me tal products, machinery and equip...	1,437	24.4%	37,726,444	20.4%	4.7\%	3.7%	0.0%	40.0\%	7.2%	1.3\%
102	351	Manufacture of Gasic iron and steel	46	4.2%	2,299,362	\%	4.3\%	4.3\%	0.0%	15.0\%	3.8 \%	0.9\%
103	352	Manufacture of Gasic precious and non-ferrous metals	181	3.1\%	1,984,924	1.1\%	2.7\%	3.0%	0.0%	13.0%	4.4\%	1.7\%
104	353	Casting of iron and steel	3	0.1%	25,240	0.0%	0.0%		0.0%	0.0\%	0.0\%	
10	35	Manufacture of structuralmetalproducts, tanks, reservoirs and steamgener...	25	0.4%	129,737	0.1%	3.8%	6.1%	. 0	15.0\%	6.2%	1.7\%
106	3541	Manufacture of structural metal products	14	0.2%	66,519	0.0%	6.8%	9.0	0.0%	15.0%	. 0 \%	1.0\%
107	3542	Manufacture of tanks, reservoirs and similar containers of metal	6	0.1\%	56,739	0.0%	0.0\%		0.0\%	0.0\%	0.0%	
108	3543	Manufacture of steamgenerators, except central heating hot water 6oilers	5	0.1%	6,479	0.0%	0.0\%		0.0%	0.0\%	0.0%	
109	355	Manufacture of other fabricated metalproducts; me talworkservice activitie..	327	5.6\%	4,132,760	2.2%	8.0\%	4.0\%	0.0%	30.0%	9.0\%	1.7\%
11	3551	Forging, pressing, stamping and roll-forming of metalpowder me tallurgy	12	0.2%	105,759	0.0%	0.0%		0.0%	0.0\%	0.0%	
111	3553	Manufacture of cutlery, fand tools and general hardware	132	. 2	1,454,735	0.8%	10.4%	11.6%	0.0%	30.0%	10.0%	0.9%
112	3559	Manufacture of other fabricated metalproducts nec	183	3.1\%	2,572,266	1.4\%	6.8%	7.3\%	0.0\%	30.0\%	7.9%	. 1
113	356	Manufacture of general purpose machinery	165	2.8%	6,801,747	3.7%	4.7\%	3.7%	0.0%	20.0\%	7.0%	2.0
114	3561	Manufacture of engines and turbines, except aircraft, ve ficle and motorcycl...	30	0.5%	1,932,588	1.0\%	2.7\%	3.1\%	0.0%	20.0\%	6.0\%	. 3%
115	3562	Manufacture of pumps, compressors, taps and valves	49	0.8%	2,500,912	1.4%	5.9%		0.0%	15.0%	7.1\%	
116	3563	Manufacture of Gearings, gears, gearing and driving elements	16	0.3%	794,146	0.5%	8.8\%		0.0%	20.0%	9.9\%	
117	3564	Manufacture of ovens, furnaces and furnace burners	4	0.1%	178,695	0.1%	0.0\%		0.0%	0.0\%	0.0%	
118	3565	Manufacture of lifting and handling equipment	48	0.8%	936,568	0.5%	3.8%		0.0%	15.0\%	5.4%	
119	3569	Manufacture of othergeneralpurpose mackinery	18	0.3%	458,839	0.2%	5.1\%		0.0%	17.0%	7.2%	
120	357	Manufacture of special purpose mackinery	359	6.1\%	11,604,590	6.2%	2.1%	6.4	0.0%	35.0\%	5.7\%	1.4\%
121	3571	Manufacture of agricultural and forestry machinery	31	0.5%	444,004	0.2%	1.6 \%	1.5	0.0%	20.0\%	4.5\%	3.1\%
12	3572	Manufacture of machine tools	96	1.6\%	2,375,265	1.1\%	1.6%	6.6%	0.0\%	20.0\%	4.8 \%	1.4\%
123	3573	Manufacture of mackinery for metalfurgy	9	0.2%	240,181	0.1%	0.0%		0.0%	0.0%	0.0%	
124	3574	Manufacture of mackinery for mining, quarrying and construction	38	0.6%	2,311,054	1.4%	1.7\%		0.0%	10.0\%	3.7\%	
125	3575	Manufacture of mackinery for food, beverage and tobacco processing	13	0.2%	400,631	0.2%	0.0%		0.0%	0.0\%	0.0%	
126	3576	Manufacture of machinery for textile, apparel and leather production	45	0.8%	924,961	0.5%	0.0%		0.0%	0.0%	0.0%	
127	3577	Manufacture of we apons and ammunition	24	0.4%	36	0.0%	15.6 \%		0.0%	35.0%	9.7\%	
128	3579	Manufacture of other special purpose machinery	103	1.8 \%	4,908,458	2.6%	0.9%		0.0%	19.0\%	3.7\%	
129	358	Manufacture of housefold appliances nec	88	1.5\%	2,189,446	1.2%	10.4%	15.1\%	0.0%	40.0%	10.5%	0.8%
130	359	Manufacture of office, accounting and computing machinery	43	0.7%	8,558,638	4.6%	0.0%	0.0	0.0%	0.0\%	0.0\%	
131	36	Manufacture of electricalmachinery and apparatus nec	250	4.2%	6,107,366	3.3%	7.3%		0.0%	21.0\%	7.5%	
132	361	Manufacture of electric motors, generators and transformers	42	0.7%	1,184,804	0.7%	7.7\%	6.0%	0.0%	20.0\%	7.7\%	1.2 \%
133	362	Manufacture of electricity distribution and control apparatus	84	1.4\%	2,217,506	1.2\%	6.5%		0.0%	15.0\%	5.7\%	
134	363	Manufacture of insulated wire and cable	11	0.2%	495,608	0.3\%	12.7\%		0.0\%	15.0\%	4.9%	
135	364	Manufacture of accumulators, primary cells and primary Gatteries	33	0.6%	407,534	0.2%	7.4\%		0.0%	20.0\%	7.4\%	
136	365	Manufacture of electric lamps and lighting equipment	43	0.7%	548,271	0.3%	11.1\%		0.0\%	21.0\%	9.5\%	
137	366	Manufacture of other electricalequipment nec	37	0.6%	1,253,642	0.7%	2.4 \%	9.6%	0.0%	15.0\%	5.1\%	1.0 \%
138	37	Manufacture of radio, television and communic ationequipment and apparatus.	319	5.4\%	21,162,307	12.3%	1.2\%	2.8%	0.0\%	25.0\%	4.4\%	2.7\%
139	371	Manufacture of electronic valves and tubes and other electronic components	29	0.5%	2,089,304	1.3%	2.4%		0.0%	25.0%	6.5%	
140	372	Manufacture of television and radiotransmitters and apparatus for line tel..	37	0.6%	6,625,351	4.0\%	6.2%		0.0%	25.0\%	8.2\%	
141	373	Manufacture of television and radio receivers, sound or video recording or ...	38	0.6%	6,415,494	3.5%	0.7%		0.0%	15.0\%	2.8\%	
142	374	Manufacture of medical appliances and instruments and appliances for measu..	98	1.7%	4,715,329	2.7%	0.5%		0.0%	20.0\%	2.7%	
143	3741	Manufacture of medical and surgicalequipment and orthopaedic appliances	60	1.0\%	2,507,717	1.4%	0.6%		0.0%	20.0\%	3.2%	
144	3742	Manufacture of instruments and appliances for measuring, checking, testing...	34	0.6%	2,164,204	1.2%	0.3%		0.0\%	10.0%	1.7\%	
145	3743	Manufacture of industrial process controlequipment	4	0.1\%	43,408	0.0\%	0.0\%		0.0\%	0.0\%	0.0%	
146	375	Manufacture of opticalinstruments and photograpfic equipment	62	1.1\%	981,609	0.6%	0.4%		0.0%	15.0\%	2.3%	
147	376	Manufacture of watches and clocks	55	0.9\%	335,220	0.2%	0.0\%		0.0\%	0.0\%	0.0\%	
148	38	Manufacture of transport equipment	239	4.1\%	31,445,659	19.2%	10.6%	12.3%	0.0%	47.0%	13.8 \%	1.3%
149	381	Manufacture of motor veficles	71	1.2\%	8,062,338	4.9%	17.7\%	18.8 \%	0.0\%	47.0\%	17.2%	1.0\%
150	382	Manufacture of bodies (coachwork) for motor veficles; manufacture of traile...	9	0.2%	124,799	0.0%	17.8%		15.0%	35.0%	6.3%	
151	383	Manufacture of parts and accessories for motor veficles and the ir engines	70	1.2\%	17,245,615	10.8%	14.6%		0.0\%	35.0%	11.8%	
152	384	Building and repairing of ships	21	0.4%	207,889	0.1%	3.3%	5.2%	0.0%	15.0\%	5.4%	1.5
153	385	Manufacture of railway and tramway locomotives and rolfing stock	25	0.4%	103,919	0.1%	0.0\%	0.0\%	0.0%	0.0\%	0.0%	
154	386	Manufacture of aircraft and spacecraft	19	0.3%	5,164,315	3.1%	0.0%	0.0\%	0.0\%	0.0%	0.0%	
155	387	Manufacture of transport equipment nec	24	0.4%	536,784	0.3%	0.6%	10.6%	0.0\%	15.0\%	3.0\%	1.0\%
156	3871	Manufacture of motor cycles	12	0.2%	339,436	0.2%	0.0%		0.0%	0.0\%	0.0%	
157	3872	Manufacture of bicycles and invalid carriages	12	0.2%	197,348	0.1%	1.3 \%		0.0%	15.0\%	4.1\%	
158	39	Manufacture of furniture; manufacturing nec; recycling	246	4.2%	6,547,556	4.2%	7.9 \%		0.0%	30.0%	9.8%	
159	391	Manufacture of furniture	28	0.5%	781,778	0.5%	17.9\%		0.0%	20.0\%	6.2%	
160	392	Manufacturing nec	218	3.7%	5,765,778	3.7%	6.7%		0.0%	30.0%	9.4\%	
161	3921	Manufacture of jewellery and related articles	62	1.1\%	3,551,474	2.5%	5.1\%	10.5%	0.0%	20.0%	8.6\%	1.0\%
162	3922	Manufacture of musical instruments	23	0.4%	57,205	0.0\%	0.0%		0.0%	0.0\%	0.0%	
163	3923	Manufacture of sports goods	27	0.5%	469,960	0.3%	3.3%	9.6%	0.0\%	20.0\%	6.5%	1.7\%
164	3924	Manufacture of games and toys	21	0.4%	859,309	0.5%	3.8%		0.0%	30.0%	9.5\%	
165	3929	Other manufacturing nec	85	1.4\%	827,830	0.4%	11.4\%	8.0\%	0.0%	30.0%	9.7\%	1.3%
166	4	Electricity, gas, steam and water supply	2	0.0%	6,974	0.0%	0.0\%		0.0%	0.0\%	0.0%	
167	41	Electricity, gas, steam and hot water supply	2	0.0%	6,974	0.0%	0.0%		0.0%	0.0\%	0.0%	
168	411	Production, collection and distribution of electricity	1	0.0\%	6,244	0.0\%	0.0\%		0.0\%	0.0\%	0.0%	
169	412	Manufacture of gas; distribution of gaseous fuels through mains		0.0\%	730	0.0%	0.0%		0.0%	0.0%	0.0%	
170		Total	5,883	100.0\%	176,564,150	100.0%	6.5%		0.0%	55.0\%	9.4\%	

Source: $\mathcal{D T}$ I, Customs ef Excise, $\mathcal{W} \mathcal{T O}(1998)$ and own calculations, note: excluding non ad-valore m tariffs

If we rank the sectors according to the average ad-valorem tariff, as is presented in the next table for the fighest 50 average tariffs calculated, it can be seen that the most protected sectors are found in the tobacco, textiles, clothing and footwe ar, food and beverage clusters, followed in $15^{\text {th }}$ position $6 y$ the motor veficle industry.

Table 15: Ranked tariff Structure for SICv5, guly 2000 and \mathcal{I} un 1997, with imports for the ye ar 2000

Source: $\mathcal{D T I}$, Customs $\mathcal{E x c i s e}, \mathcal{W} \mathcal{T} O(1998)$ and own calculations, note: excluding non ad-valorem tariffs

7) Colfection Rates

There are a number of reasons why the actual duties collected as a proportion of imports may be less than the scheduled tariffs. Firstly, there may be rebates that apply to certain shipments and not to others. Secondly, goods may be imported from a Free Trade $\mathcal{A r e}$ a such as the EU or $\mathcal{S A D C}$. There may also be other bilateral agreements that apply to certain countries and certain goods. These arrangements will put significant burden on the Customs er Excise administration. Some monitoring of the applied rates that are governed by the EU and $\mathcal{S A D C} \mathcal{F T A}$ sis currently undertaken at $\mathcal{D T}$ I but this needs to be expanded and matched with the relevant trade data. The third reason for a deviation between actual and potential duties collected is the intentional and unintentional administrative error. We first present the duty collection efficiency analysis by broad tariff band followed by broad commodity classification of 22 chapters. Note that there is no information available to discriminate amongst these three elements and in what follows in this section the analysis is limited to ad-valorem tariffs.

Table 16: Consolidated tariff analysis based on $\mathcal{I} u l y 2000$ tariff schedule and 2000 imports, actual duties collected and potential duties (current R million)

		$\begin{gathered} \text { \# of } \mathcal{H S} 8 \\ \text { lines } \end{gathered}$	\% of \# of Cines	Imports	\% imports	Actual duties collected	Actual duties collection rate	Potential duties to be collected	Potential duty colfection rate	Collection efficiency rate
		1	2	3	4	5	6	7	8	9
1	tariff $\geq 40 \%$	63	0.8%	6,133	3.5%	316	5.2%	2,865	46.7\%	11.0\%
2	30% tariff $<40 \%$	168	2.1\%	17,161	9.7\%	514	3.0%	5,911	34.4\%	8.7\%
3	20% <tariff $<30 \%$	681	8.7\%	9,771	5.5\%	1,374	14.1\%	2,015	20.6\%	68.2%
4	15\% <tariff <20\%	576	7.4%	5,871	3.3%	641	10.9%	886	15.1\%	72.3%
5	10% <tariff < 15%	539	6.9%	6,602	3.7%	477	7.2%	683	10.3%	69.9%
6	5% <tariff $<10 \%$	366	4.7%	9,622	5.4\%	458	4.8%	542	5.6%	84.5\%
7	0% <tariff < 5\%	5	0.1\%	44	0.0%	2	3.7%	2	3.8%	99.4\%
8	0%	3,485	44.5%	121,357	68.7\%	8	0.0\%	0	0.0\%	na
9	Total	5,883		176,564	100.0%	3,791	2.1\%	12,904	7.3%	29.4\%

Source: $\mathcal{D T}$ I and Customs $\mathcal{E x}$ cise, note: analys is only applies to ad-valorem tariff

While the first four columns are repeated from Table 6 above, column 5 shows the actual duties collected as published by Customs ef Excise followed by the collection rate, i.e., the actual duties collected divided by the total imports for 2000 shown in column 3, in the next column. Ulsing the tariff schedule of \mathcal{I} uly 2000 , the potential duties collected over the same period are shown in column 7 with the potential duty collection rate in column 8 . Comparing columns 6 and 8 offers a view on the collection efficiency rate, keeping in mind the various reasons for deviations from unity as discussed above. It can be seen that the collection efficiency increases when moving down the tariff schedule, i.e., below 10% import duty rates, the actual duties collected are about 85% of what should have been collected. On the other side of the schedule, the collection rate is evidently much lower, with less than 10% being collected of the potential duties for tariffs over 30%. The overall collection efficiency rate (as defined in our limited way) is about 29%.

To get a broad indication of where in the commodity range the collection efficiency is relatively low, we present the same information for 22 broadly defined commodity groups. What is clear from the $\mathcal{T} a b l e 17$ below is that the overall average is pulled down by the "unclassified" category in shown in row 22 . This includes the imports of original equipment components for the motor veficle industry which faces 35% in the tariff schedule. Moreover, in row 17 it can be seen that the collection efficiency in the broad category of motor veficles is the second lowest. Both should be seen in the light of the Motor Industry $\mathcal{D e v e l o p m e n t ~ P l a n . ~ D u t i e s ~ c o l l e c t e d ~ o n ~ m i n e r a l ~ p r o d u c t s ~ a r e ~ a l s o ~}$ significantly less than what should be collected although the value of the potential duties involved is very low.

Table 17: Consolidated tariff analysis based on $\mathcal{I} u l y 2000$ tariff schedule and 2000 imports, actual duties collected and potential duties (current \mathcal{R} million) for 22 broad categories of commodities

			\# of $\mathcal{H S} 8$ lines	\% of \# of lines	Imports	\% imports	Actual duties collected	Actual duties collection rate	Simple ave rage tariff	Potential duties to be collected	$\begin{gathered} \text { Potential } \\ \text { duty } \\ \text { collection } \\ \text { rate } \end{gathered}$	Colfection efficiency rate
	Ch22	Ch22 code	1	2	3	4	5	6	7	8	9	10
1.	01	Live animals animal products	128	2%	824	0.5%	58	7.0%	11.1\%	103	12.5%	56.3%
2.	02	Vegetable products	295	5%	2,389	1.4\%	33	1.4\%	7.2%	52	2.2%	62.8%
3.	03	\mathcal{A} nimal or vegetable fats \&oils	43	1\%	773	0.4\%	13	1.7\%	4.2%	23	2.9%	59.2%
4.	04	Prepared foodstuffs, Geverages, tobacco	210	4\%	2,030	1.1\%	203	10.0%	15.0\%	238	11.7%	85.4\%
5.	05	Mineral products	166	3%	26,521	15.0%	2	0.0\%	2.0%	13	0.0%	13.0%
6.	06	Products of chemical or alfied industries	1,094	19%	20,373	11.5%	238	1.2\%	2.3%	335	1.6%	71.0%
7.	07	Plastics and rubber	424	7%	7,414	4.2%	468	6.3%	8.8\%	693	9.3\%	67.5%
8 .	08	Raw fides and skins, leather	75	1\%	1,091	0.6%	109	10.0%	10.9%	137	12.5%	79.9%
9.	09	Wood, cork, straw	86	1\%	1,208	0.7\%	31	2.6\%	7.7\%	37	3.1\%	82.9\%
10.	10	Pulp, paper * paper6oard, Gooks	166	3%	3,710	2.1\%	199	5.4%	6.5%	245	6.6%	81.2\%
11.	11	Textiles, fabrics, clothing	443	8%	2,428	1.4 \%	209	8.6\%	14.6%	302	12.4%	69.2%
12.	12	Footwe ar, he adge ar, umbrellas	74	1\%	829	0.5%	150	18.0%	20.8\%	226	27.3\%	66.2%
13.	13	Articles of stone asbestos ceramics glass	203	3%	2,673	1.5%	156	5.9%	7.0\%	176	6.6%	88.7\%
14.	14	Precious metals	60	1\%	3,551	2.0\%	25	0.7%	5.3%	33	0.9%	77.4%
15.	15	Base metals	742	13%	7,555	4.3%	258	3.4%	5.7\%	353	4.7\%	72.9%
16.	16	Machinery, mechanical ofelectrical	1,035	18%	52,723	29.9%	785	1.5%	4.0\%	1,060	2.0\%	74.1\%
17.	17	Veficles, aircraft, sfips	211	4%	15,524	8.8\%	617	4.0\%	10.0%	3,337	21.5%	18.5%
18.	18	Optical photograph measuring musical inst	242	4\%	6,909	3.9%	15	0.2%	0.3%	34	0.5%	45.4%
19.	20	Miscellaneous manufactured articles	170	3%	2,812	1.6%	171	6.1\%	9.7\%	255	9.1\%	67.1%
20.	21	Works of art collectors pieces \& ¢ antiques	7	0%	220	0.1\%	0	0.0%	0.0%	0	0.0%	na
21.	22	Other unclassified goods	9	0%	15,008	8.5\%	51	0.3%	35.0%	5,253	35.0%	1.0\%
22.		Total	5,883	100%	176,564	100.0%	3,791	2.1\%	6.5%	12,904	7.3%	29.4\%

Source: $\mathcal{D T}$ I and Customs ef Excise, note: analys is only applies to ad-valorem tariff

8) Effective Rates of Protection

It is well known that the degree of protection derived by an activity from a tariff on its output needs to be qualified by the degree of taxation due to tariffs on its inputs in order to get a sense of the net protection as opposed to the gross protection. Net, or rather, effective protection has been the subject of severalstudies in South Africa (see $\mathcal{H o l d e n}$ and Holden, 1975 ; Kufn \& Jansen, 1997 and Fedderke evaze, 2000). While the traditional ingredient to the calculation of effective rates of protection is the nominal tariff as scheduled by the authorities, Fedderke \& Vaze (2000) use collection rates as a proxy in the face of data constraints. The other ingredient that is necessary for the successfulexamination of effective protection is information on the inputs of each of the activities identified. Input structures for a large number of activities in the South African economy have recently been updated by \mathcal{S} tats $\mathcal{S A}$ (2000) Genchmarked on the year 1998 as part of the Supply - Ulse Tables for that year ${ }^{3}$.
$\mathcal{A l t h o u g h}$ this is not a perfect set of ingredients, the nominal tariffs for 2000 and the 1998 SUT are currently the most recent available and will be used in this section to examine various (but not all) angles on effective rates of protection.

The simplest way to think about effective rates of protection is continue with the net protection concept mentioned above, which suggests that we should be concerned with the impact of nominal tariffs on net production, or value added. In particular, we like to know the difference between a sector's value added in world prices and in domestic (i.e. distorted or observed) prices expressed in terms of the latter. This can be written as:

[^3](1) $\quad \operatorname{ER}_{j}=\frac{V \mathscr{A}_{j}{ }^{*}-V \mathcal{A}_{j}}{\mathcal{V} \mathfrak{A}_{j}}$
in which ERP $_{j}$ is the effective rate of protection in activity j, the "*" subscript indicates world price so that $\mathcal{V A}_{j}{ }^{*}$ value added of activity j at world prices and $\mathcal{V A}_{j}$ value added of sector j at domestic prices as observed in the input-output data Gase. Since value added is the difference between output (X_{j}) in activity j and intermediate inputs (Int $m_{i j}$) that activity j purchases from activity i, equation (1) can be rewritten as
(2)
in which t_{j} and t_{i} are the tariffs on activity j and i respectively. Some properties worth mentioning here are that effective protection will be figher if the nominal protection on output $\left(t_{j}\right)$ is raised, 6ut lower if the nominal protection on inputs (t_{i}) is raised. With figher intermediate demand ($I n t m_{i j}$), value added will be lower and with a given tariff on output the proportional effect on value added is greater as there is less to protect.

In what follows we simplify a number of issues that have been dealt with extensively in the literature but they are worth mentioning briefly at this stage. Firstly, there is the issue of non-traded inputs such as construction, electricity, trade, transport, financial and community services. Two crude options are available, either non-traded inputs are considered traded inputs with a zero tariff, which has been labelled the Balassa method, or non-traded inputs are considered to be part of value added. The latter option, in which the index i of equation (2) above only applies to traded activities, was proposed by Corden. Consequently, with an expanded view on value added, there is more to protect, so to speak, and as a result the leverage of the output tariff is smaller and the effective rates of protection of the Corden method are most likely to be lower than those calculated by the Balassa method.

The so-called crude Corden measure can be refined by factoring the direct and indirect traded intermediate inputs out of the value added by taking the appropriate components of the Leontief inverse. Moreover, it could be argued that prices of non-traded inputs rise with protection due to higher competition for resources and aggregate expenditure effects (Greenaway \&Milner, 1993: 83) which would give rise to higher effective protection given the same output tariff. The degree to which prices will in fact increase depends on the substitution between non-traded and traded goods. Staying with the possibility of substitution, \mathcal{H} lden and \mathcal{H} olden (1978) have investigated the degree to which intermediate inputs and value added can be exchanged. If there is indeed scope for substitution away from taxed inputs towards primary inputs, $I_{n t m_{i j}}$, in equation (2) above can be expected to decline and given the same tariff schedule, the effective rate of protection will be lower compared to a situation without substitution. $\mathcal{A l t h o u g h}$ a number of other substitutions are possible according to \mathcal{H} lden $\mathcal{H} \mathcal{H}$ (den (1978, 226), we ignore them for
reasons of convenience. In sum, our application below takes a rather static view on protection afforded by the tariff schedule

Finally, we do not investigate the actually observed resource shifts that may or may not be associated with nominal or effective rates of protection. The degree to which nominal and effective rates of protection induce resources to shift into the higher protected activities have been tested by Holden (1999) and Fedderke \& Vaze (2000) for South Africa. We limit ourselves to the reporting of effective rates of protection according to the Balassa and crude Corden methods based on the tariff schedule and the observed collection rates. In terms of the distinction between traded and non-traded goods the former is assumed to include $\mathcal{A g}$ riculture, $\mathcal{M i n i n g}$ and $\mathcal{M a n u f a c t u r i n g}$, i.e., S IC 1-3.
\mathcal{N} (on-traded goods therefore include utilities, construction and all services. Comparisons between nominal and effective, Balassa and Corden and tariff schedule and collection rates respectively are achieved by means of correlation coefficients.

Table 18: Nominal and effective rates of protection for 2000 based on the tariff structure

S U- tables description	$\begin{gathered} \hline \text { Balassa's } \\ \text { ERP } \\ \hline \end{gathered}$	$\begin{gathered} \text { Corden's } \\ \text { ER } P \\ \hline \end{gathered}$	rank	\mathcal{N} (P P	rank	S U- tables description	$\begin{gathered} \hline \text { Balassa's } \\ \text { ER } P \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Corden's } \\ \operatorname{ER}^{2} P \\ \hline \end{gathered}$	rank	\mathcal{N} (P	rank
1 Carpets	364.3%	78.6%	1	28.9%	5	49 Pe trole um	1.4 \%	0.9%	46	0.5%	66
2 Handbags	321.2 \%	70.2%	3	30.0\%	3	50 Basic chemicals	1.2\%	0.6\%	50	1.0\%	58
3 Motor veficles	252.4 \%	81.0%	2	36.2%	1	51 Pesticides	0.5\%	0.3%	51	1.2%	55
4 Motor veficle parts	145.0%	64.8 \%		32.7\%	2	52 Pumps	0.5\%	0.3%	52	1.6%	51
5 Bakeries	116.2%	54.1\%	5	24.8\%	7	53 General machinery	0.3%	0.2\%	53	1.4%	52
6 Footwear	99.8\%	55.8%	6	28.1\%	6	54 Lifting equipme nt	0.1\%	0.1\%	54	1.1\%	56
7 Wearing apparel	98.8\%	50.7\%	12	29.2\%	4	$55 \mathcal{F S}$ IM	0.0%	na	55	0.0\%	74
8 Furniture	92.2\%	38.7\%	11	19.3 \%	10	56 Electricalequipment	- 0.3%	-0.2\%	57	2.1\%	48
9 Soap	82.2\%	35.3%	7	18.9%	12	57 Agriculture	- 0.3%	-0.2\%	58	1.4 \%	53
10 Tyres	80.0\%	35.1\%	8	19.0%	11	58 Realestate	-0.3\%	na	84	0.0%	84
11 Řnitting mills	79.9%	35.0%	14	21.3\%	9	59 Mac fine-tools	- 0.3%	-0.2\%	56	0.9\%	61
12 Textile articles	76.8%	36.5%	15	21.8%	8	60 Electricity	- 0.4%	na	60	0.0\%	87
13 Animalfeeds	71.4%	34.0%	9	9.0\%	26	61 Insurance	-0.5\%	na	59	0.0%	80
14 Other paper	62.6\%	31.0%	13	15.7%	13	62 Cement	- 0.6%	-0.4\%	74	0.0%	87
15 Wire and cable	50.0\%	33.3%	10	14.2%	14	63 Water	- 0.6%	na	76	0.0%	82
16 Other food	40.6%	20.8\%	16	13.6%	16	64 Fis h	- 0.8%	-0.6\%	65	0.5\%	67
17 Lighting equipment	39.1\%	23.3\%	17	12.4%	18	65 Publis fing	-0.9\%	-0.6\%	62	1.9%	49
18 Confectionery	37.5\%	21.1\%	22	13.7%	15	66 Business activities	- 0.9%	na	61	0.0\%	73
19 Fruit	35.4%	17.8%	21	11.4%	21	67 Other mining	- 1.1\%	- 0.7%	72	0.0\%	71
20 Other rubber	35.0%	20.4\%	18	11.8\%	20	68 Communications	- 1.1\%	na	71	0.0\%	79
21 Textiles	32.9%	17.7%	23	10.9%	22	69 Trade	-1.2\%	na	69	0.0%	85
22 Plastic	31.1\%	19.3 \%	25	13.0%	17	70 Health and social work	- 1.3%	$n a$	73	0.0%	76
23 Other textiles	28.0\%	17.9%	27	11.9%	19	71 Generalgovernment	- 1.3%	na	63	0.0%	78
24 Containers of paper	26.3%	15.7%	24	10.2%	24	$72 \mathcal{F e r t i l i z e r s}$	- 1.3%	- 0.8%	81	0.0\%	87
25 Paper	22.7\%	11.0\%	20	7.2%	28	73 gold	- 1.4 \%	-1.1\%	68	0.0\%	87
26 Glass	20.1\%	11.1\%	31	8.9\%	27	74 Other transport	- 1.5%	- 1.1%	66	0.2%	69
27 Beverages \& ${ }^{\text {cobacco }}$	19.3%	12.8%	19	9.7\%	25	75 Grain mills	- 1.6%	- 1.0%	78	0.7\%	63
28 Other non-metallic	19.3%	10.3%	28	6.0\%	33	76 Treated metals	- 1.7 \%	-1.0\%	70	0.0\%	87
29 House hold appliances	14.9%	8.7\%	36	6.7%	30	77 Activities/services	- 1.7%	na	67	0.0%	75
30 Primary plastics	14.9%	8.3\%	26	4.8%	38	78 Agricultural machine ry	-1.7\%	-1.3\%	75	0.8%	62
31 Oils	14.5%	6.9%	29	4.9%	36	79 Engines	- 1.7%	- 1.1%	64	0.5\%	65
32 Structuralceramics	14.1\%	9.2\%	32	6.2%	32	80 Coal	- 1.9%	-1.2\%	82	0.0%	87
33 Fabricated metal	12.4%	7.6%	33	5.4%	34	81的airy	- 2.0%	-1.2\%	77	1.0\%	57
34 Non-structuralceramics	12.3%	6.3%	35	5.0\%	35	82Sugar	- 2.1%	-1.3\%	83	0.0\%	87
35 Generalfardware	12.1\%	7.8%	34	6.3%	31	83 Transport services	-2.1\%	na	80	0.0\%	83
36 Structuralmetal	10.0%	5.9%	40	4.9%	37	84 Hotels	- 2.4%	na	92	0.0\%	86
37 Iron and steel	10.0%	5.0%	37	3.4%	44	85 Specialmachinery	- 2.9%	- 2.0%	79	0.3%	68
38 Paints	7.3\%	3.6%	41	4.1\%	43	86 Pharmaceuticals	-3.1\%	- 1.7%	88	0.1\%	70
39 Electricity apparatus	6.8%	5.1\%	39	4.6%	40	87 Other chemicals	. 3.3%	- 2.0%	85	1.2 \%	54
40 Wood	5.7\%	3.6%	43	3.1\%	45	88 Mining macfinery	- 3.8%	- 2.6%	86	0.9\%	59
41 Other manufacturing	5.1\%	4.4%	30	4.8%	39	89 Office machine ry	. 4.3%	-2.1\%	91	0.0%	87
42 Electric motors	4.7\%	3.4%	44	4.5%	41	90 Other construction.	- 4.3%	na	90	0.0%	77
43 Non-ferrous metals	4.5%	3.1\%	38	2.5%	47	910 pticalinstruments	- 4.4%	- 2.9%	87	0.6%	64
44 Accumulators	3.9%	2.5\%	42	4.1\%	42	92 Recorded media	- 6.6%	- 4.5%	94	0.0%	72
45 Radio and tele vision	3.5%	2.2%	48	2.7%	46	93 Food mackinery	- 7.4 \%	. 5.0%	89	0.0\%	87
46 Leather	3.3%	1.5%	45	6.9%	29	94 Buildings	. 7.5%	na	93	0.0%	81
47 ge wellery	3.1\%	1.9%	47	0.9\%	60	95 Meat	$.378 .3 \%$	221.8%	95	10.5%	23
48 Gears	2.1\%	1.2\%	49	1.8\%	50	Ave rage on traded goods	12.0\%	7.6\%		7.3\%	

Source: $\mathcal{D T}$ I and Customs \& Excise and own calculations, note: analysis only applies to ad-valorem tariff, for S IC codes see Stats SA (2000)

Several observations can be made. In the first place, row 95 shows that the meat sector's effective rate of protection is the lowest when calculated with the Balassa method, while it is the fighest in case the Corden method is applied. The reason is that according to \mathcal{S} tats $\mathcal{S A} \mathcal{A} S u p p l y$ - $\mathcal{S l s e} \mathcal{T}$ able, value added as a proportion of total output in this activity is about 5%, while the economy-wide average is about 50%, which causes any change in intermediate inputs due to tariffs abolition to produce exaggerated change in value added, which may swing from positive to negative territories.

In the second place it can be seen that the effective rate according to the Balassa method is indeed considerably higher than the effective rate according to the Corden method. If we ignore the wild swing in the effective rate of protection of the meat sector (see row 95) the correlation coefficient is 91% on the traded goods, while the rank correlation betwe en the two measures is 99%. The correlation between the Balassa measure and the nominal rates of protection is 68% and the rank correlation is 88%, while the correlation between the Corden measure and the nominal rates of protection is 67% and the rank correlation 95% respectively. This suggests that the nominal rate of protection is a reasonable indicator of the effective rate of protection.
\mathcal{A} the top of the table it can be seen that relatively high effective rates of protection are found in the textiles, leather, footwear, clothing, motor vehicles and parts, food processing and to some degree the chemicals and rubber production activities. Towards the middle of the table, we arrive in negative effective rate territories. Activities that currently receive no protection on the ir output, such as the non-traded goods producers and traded activities, such as cement (row 62) and fertiliser (row 72), sugar (row 82) and office equipment (row 89) are subject to negative real protection. However, also activities with a lowlevel of output protection such as electrical equipment (row 56), agriculture (row 57) and grain milfing (row 75), other chemicals (row 87) and optical equipment (row 91) fave a negative effective rate of protection, because the weighted input tariffs on the ir inputs amount to more than the ir output tariff.

In the next table we show results of the same methodologies but now applied to the collection rates. In the last row it can be seen that the nominal collection rate is only just over 2% compared to an average schedules ad-valorem equivalent of more than 7%. The effective rates of protection on traded goods are therefore also much lower at 7% and 4.5% for the $\mathcal{B a l a s s}$ a and Corden method respectively. By comparing the ratio effective and nominal rates of protection of the tariff schedule with that of the collection rates it can be noted that they are figher than for the latter, which suggests that there is relatively more effective protection when considering the collection rates. The correlations between the effective rates and the nominalcollection rates are again, relatively figh at 64% and 89% for the respectively Balassa and Corden method respectively, while the rank correlations are 92% and 95% respectively. This suggests again that the nominal rate of protection based on collection rates is a reasonable indicator for the effective rate of protection based on collection rates.

Table 19: Nominal and effective rates of protection for 2000 based on the collection rates

S U- tables description	$\begin{gathered} \text { Balassa's } \\ \mathcal{E R P} P^{2} \\ \hline \end{gathered}$	Corden's ERP P	rank	\mathcal{N} (R P	rank	S U- tables description		$\begin{gathered} \text { Corden's } \\ \operatorname{ERR} P \end{gathered}$	rank	\mathcal{N} (R P	rank
1 Meat	386.8%	67.5%	1	5.9%	25	49 Pumps	1.1\%	0.8%	49	1.5%	49
2 Handbags	259.3 \%	64.0%	2	26.3\%	1	50 Motor veficle parts	0.8\%	0.5\%	52	1.6%	48
3 Carpets	224.7 \%	63.5%	3	23.6%	3	51 Lifting equipment	0.8%	0.5%	51	1.0%	54
4 Bakeries	105.7%	50.5%	4	23.3\%	4	52 Electricalequipment	0.7\%	0.5\%	50	1.8%	45
5 We aring apparel	85.2\%	45.2\%	8	24.6%	2	53 Pesticides	0.4\%	0.2%	54	1.0\%	56
6 Animalfeeds	76.1\%	35.7%	5	8.7\%	19	54 Basic chemicals	0.3%	0.1\%	55	0.5\%	62
7 Textile articles	68.7%	33.4\%	12	18.6%	5	55 General machinery	0.2%	0.2\%	56	1.1\%	51
8 Other paper	59.1\%	29.6\%	6	14.3%	7	56 Pe trole um	0.2 \%	0.1%	53	0.1%	70
9 Soap	53.9%	25.4%	7	14.2 \%	8	$57 \mathcal{F S I M}$	0.0%	0.0%	57	0.0%	74
10 Footwe ar	52.3%	32.7\%	10	17.7%	6	58 Publis fing	- 0.2%	- 0.2%	58	1.7\%	47
11 Khitting mills	43.4%	21.5%	16	13.5\%	9	59 Realestate	- 0.3%	0.0%	86	0.0%	84
12 Lighting equipment	40.2%	23.8\%	11	11.9%	10	60 Electricity	- 0.3%	0.0\%	62	0.0%	87
13 Tyres	40.1%	20.1\%	13	11.4 \%	12	61 Insurance	- 0.4%	0.0%	60	0.0%	80
14 Wire and cable	35.5%	24.5%	9	10.4%	15	62 Fis $\sqrt{1}$	- 0.4%	-0.3\%	61	0.5\%	63
15 Other food	33.3%	17.5%	14	11.4 \%	13	63 Generalgovernment	-0.5\%	0.0%	59	0.0%	78
16 Confectionery	31.3%	18.0%	18	11.8\%	11	64 Water	- 0.5%	0.0\%	80	0.0%	82
17 Furniture	30.0%	15.5%	22	9.2\%	17	65 Cement	- 0.5%	-0.3\%	79	0.0%	87
18 Containers of paper	28.1\%	16.7%	19	9.5%	16	66 Grain mills	- 0.7%	-0.4\%	71	0.6%	61
19 Other rubber	26.3%	15.8%	15	9.0\%	18	67 Other mining	- 0.7%	- 0.4%	68	0.0%	72
20 Plastic	26.2%	16.5%	23	10.7\%	14	68 Agriculture	-0.7\%	-0.6\%	78	0.8%	57
$21 \mathcal{F}_{\text {ruit }}$	24.8 \%	12.9%	20	8.5%	20	69 Business activities	-0.7\%	0.0%	63	0.0%	73
22 Textiles	19.4%	11.0 \%	27	6.9%	23	70 Dairy	- 0.7%	-0.5\%	66	1.0\%	53
23 Other non-metallic	18.2%	9.8\%	24	5.6\%	27	71 Communications	- 0.7%	0.0%	69	0.0%	79
24 Motor veficles	18.1%	10.6%	26	4.9%	30	72 Mac fine-tools	- 0.7%	- 0.5%	64	0.4%	64
25 Othertextiles	17.8%	11.7%	30	7.8%	21	73 Transport services	- 0.8%	0.0\%	74	0.0%	83
26 Paper	16.7%	8.4\%	17	5.5\%	28	$74 \mathfrak{A c t i v i t i e s / s e r v i c e s ~}$	- 0.9%	0.0%	65	0.0%	75
27 Glass	16.7%	9.3%	28	7.5%	22	75 Health and social work.	- 0.9%	0.0\%	76	0.0%	76
28 Structuralceramics	13.1\%	8.5\%	32	5.7\%	26	76 Trade	- 0.9%	0.0%	75	0.0%	85
29 Beverages \& tobacco	11.4 \%	7.8%	21	6.4%	24	77 Agricultural machinery	-1.0\%	- 0.7%	70	0.7\%	58
30 Oils	11.2 \%	5.4\%	29	3.8%	37	78 Fertilizers	- 1.0%	-0.6\%	84	0.0%	87
31 Non-structuralceramics	11.0\%	5.7\%	35	4.4\%	32	79 Gold	- 1.1%	-0.8\%	72	0.0%	87
32 Fabricated metal	10.6%	6.5%	33	4.4\%	33	80 Coal	-1.1\%	- 0.7%	81	0.0%	87
33 Generalfardware	10.1%	6.5\%	34	5.2%	29	810 ther transport	- 1.2%	- 0.9%	67	0.2%	68
34 House hold appliances	9.9%	5.9%	37	4.8%	31	82 Treated metals	-1.2\%	-0.7\%	73	0.0%	87
35 Primary plastics	8.3\%	4.7\%	31	2.8%	42	83 Sugar	-1.4\%	-0.9\%	85	0.0%	87
36 Iron and steel	7.1\%	3.6%	38	2.5%	44	84 Hotels	- 1.6%	0.0\%	93	0.0%	86
37 Electricity apparatus	6.7\%	5.0\%	36	4.0\%	35	85 Engines	-1.9\%	-1.2\%	77	0.3%	65
38 Paints	6.3%	3.1\%	39	3.3%	39	86 Other chemicals	- 2.0%	-1.2\%	83	1.1\%	52
39 Structural metal	5.3%	3.2%	40	2.9%	41	87 Special machinery	- 2.2%	-1.5\%	82	0.2%	67
40 Other manufacturing	5.0\%	4.3%	25	4.4 \%	34	88 Pfarmaceuticals	- 2.4 \%	- 1.4 \%	87	0.2%	69
41 Wood	4.9%	3.1\%	42	2.6%	43	89 Mining mackine ry	- 3.0%	-2.1\%	88	0.7\%	60
42 Electric motors	4.2%	3.1\%	43	3.5%	38	90 Other construction.	-3.4\%	0.0\%	91	0.0%	77
43 ge welfery	3.4%	2.1\%	45	0.7%	59	910 ffice machinery	. 3.4%	- 1.7%	92	0.0%	87
44 Accumulators	3.3%	2.1\%	41	3.2%	40	92 Optical instruments	- 3.9 \%	-2.6\%	89	0.3%	66
45 Gears	2.1\%	1.2\%	46	1.5%	50	93 Recorded media	. 5.5%	-3.7\%	95	0.0%	71
46 Leather	1.8 \%	0.8\%	47	4.0\%	36	94 Food machinery	. 5.7%	. 3.8%	90	0.0%	87
47 Radio and tele vision	1.7%	1.1\%	48	1.8 \%	46	95 Buildings	-6.1\%	0.0\%	94	0.0%	81
48 Non-ferrous metals	1.6\%	1.1\%	44	1.0\%	55	Average	7.0\%	4.5\%		2.1\%	

Source: $\mathcal{D T} I$ and Customs éExcise and own calculations, note: analysis only applies to ad-valorem tariff, for S IC codes see Stats SA (2000)

While the ranking of activities is more or less the same as in the case of the effective rates based on the tariff schedule, the notable absentee from the top is motor vehicles, basically, because the nominal tariff based on collection rates is, with 10% (see row 24) much lower than the scheduled weighted average tariff of 36%. The correlation coefficients between the effective rates of protection based on the collection rates and the tariff schedule is 87% and 84% for the Balassa and Corden method, while the rank correlation is 97% and 96% respectively, which suggests that the effective rates of protection based on the collection rates are a good indicator of the effective rates of protection based on the tariff schedule. The ultimate question, however, is whether the actual collection rates are correlated in any way with the effective rates of protection based on the tariff schedule. The correlation coefficients are however, much lower at about 54% and 60% for the $\mathcal{B a l a s s a}$ and Corden method respectively, although they reach 74% and 82% respectively if we ignore the meat processing activity as an outlier. $\mathcal{T h}$ is means that if one is aware of outliers, such as the meat processing activity, the actual import duty collection rates, at least at this levelof activity aggregation, gives a reasonably accurate picture of effective rates of protection based on the tariff schedule.
9) Conclusions and Recommendations

It is clear from our analysis that a rather arbitrary framework for tariff analysis has been chosen, many other permutations of the data could offer other angles on the tariff structure in South $\mathcal{A f r i c a}$, such as tariff escalation. Moreover, the analys is has not dealt with rebates, bindings, free trade agreements and other bilateral trade arrangements between South Africa and its trading partners.
\mathcal{A} cursory comparison with earlier analysis suggests that tariffs fave declined over the period 1997-2001, nota6ly for manufacturing. However, further tariff liberalisation has been slow in last couple of years. Tariff peaks still exist for a number of broad categories of commodities such as processed foods ($\mathcal{H S}$ 0-2), ve ficles and components thereof ($\mathcal{H S}$ 87), tobacco products ($\mathcal{H S} 24$), rubber products ($\mathcal{H S} 40$) and clothing and textiles ($\mathcal{H S} 6$). About 25% of the $\mathcal{H S} 8$ commodity lines are faced with non ad-valorem tariffs, although the value of imports involved is not more than 4\% of total import in 2000. An attempt is made to convert non ad-valorem tariffs in order to checkfor tariff peaks. The highest ad-valorem equivalents are recorded for processed food, in various stages, and textiles. Finally, duty collection rates, which cangive an indication of the efficiency of duty collection are lowest for mineralfuels, motor veficles and components thereof. Relatively high effective rates of protection are found in the textiles, leather, footwear, clothing, motor veficles and parts, food processing and to some degree the chemicals and rubber production activities.

The tariff schedule changes on a biwe kly basis. Combined with the monthly releases of trade date it makes sense to consider creating a system that takes both data sources and combines them into a single analytical platform from which various analytical reports can be drawn on a regular basis. Such a system should be able to generate at least some if not all of the tables presented above and many more, after all they are generated in rather mechanical way. Finally, having more than 200 different tariffs may still pose an administrative burden and it makes sense to further simplify the tariff schedule from that point of view.

References

$\mathcal{F e d}$ derke, \mathcal{I} Gaze, $\mathcal{P} .2000:$ The nature of South Africa's trade patterns, by economic sector and the extent of trade liberalisation during the course of the 1990 s , Econometric Research Southern $\mathcal{A f r i c a}$, Policy Paper, no 3.

Greenaway \mathcal{D} and $\mathfrak{M i l n e r} \mathcal{C}(1993)$ Trade and industrial policy in developing countries: a manual of policy analysis, MacMillan, London.

Holden, M. 1999: Effective protection revisited: how usefula policy toolfor South Africa, Seminar, $\mathcal{T} I \mathcal{P S}$ Winter School, Iofannesburg, November.
$\mathcal{H o l d e n}, \mathcal{M}$. $\mathcal{G} \mathcal{H o l d e n}, \mathcal{P} .1975:$ An intertemporalcalculation of effective rates of protection for South Africa, South African Iournal of Economics, vol 43, no 3.
$\mathcal{H o l d e n}, \mathcal{M}$ \&Holden, P. 1978 : Factor substitution and the calculation of effective tariff rates, South $\mathcal{A} f r i c a n$ I ournal of Economics, vol 46, no 3.

Kufn, $\mathcal{G} \mathcal{G} \operatorname{Ig}$ ansen, R. 1997: The effective protection rate and anti-export bias, IDC Research Paper, $\mathcal{T S} 1 / 97, S$ andton Lewis, I. 2001 : Reform and Opportunity: the Changing Role and Patterns of \mathcal{T} rade in \mathcal{S} outh $\mathcal{A f r i c}$ an and $\mathcal{S A D C}$, a Synthesis of World Bank Research, Africa Region Working Papers Series, no 14.

Stats $\mathcal{S A}$, 2000: Supply - Ulse Table for 1998, Pretoria.

WTO. 1998: Trade Policy Review, Republic of South Africa, $\mathcal{W T} / \mathcal{T P R} /$ S/34

[^0]: ${ }^{1} \mathcal{A n}$ earlier version of this paper was presented at a workshop for the TiPS Trade Policy Revie w

[^1]: Source: DT I

[^2]: ${ }^{2}$ refers to foot we ar, 24 stands for 2 units or a pair.

[^3]: ${ }^{3}$ It should be noted, however, that the structural information on an activities input structure, available from the Ulse component of the Supply - Ulse Tables, is still based on the 1993 manufacturing census, although a partial updating has been achieved for lower levelcontroltotals using the 1996 manufacturing census.

