ANALYSIS OF EXPORT AND EMPLOYMENT OPPORTUNITIES FOR THE SOUTH AFRICAN MANUFACTURING INDUSTRY #### Mr. Johan Malan Email: johan.malan@nwu.ac.za Tel: + 27 73 143 2073 ## **Dr. Ermie Annelies Steenkamp** (corresponding author) Email: ermie.steenkamp@nwu.ac.za Tel: + 27 18 299 1479 Fax: +27 18 299 1398 ## **Prof. Riaan Rossouw** Email: riaan.rossouw@nwu.ac.za Tel: + 27 18 299 1437 Fax: + 27 18 299 1398 ## **Prof. Wilma Viviers** Email: wilma.viviers@nwu.ac.za Tel: + 27 18 299 1445 Fax: + 27 87 231 5540 ## All the authors are affiliated to: TRADE (Trade and Development) research niche area North-West University (Potchefstroom Campus) Private Bag X6001, Potchefstroom 2520, South Africa # TABLE OF CONTENTS | 1. | IN | TRODUCTION | 1 | |----|-----|---|-----| | | 1.1 | Economic climate | 1 | | | 1.2 | South Africa's manufacturing outlook | 2 | | | 1.3 | Focused export promotion | 3 | | | 1.4 | Paper outline | 4 | | 2. | LI | ΓERATURE OVERVIEW | 5 | | | 2.1 | Industrialisation and manufacturing | 5 | | | 2.2 | Trade, growth and employment | 6 | | 3. | MI | ETHODOLOGY | 7 | | | 3.1 | The CGE model | 7 | | | 3.2 | The Decision Support Model for identifying export opportunities | 12 | | 4. | RE | SULTS | .14 | | | 4.1 | CGE simulation results | 15 | | | 4.2 | DSM results | 20 | | 5. | CC | ONCLUSION | .22 | | | 5.1 | Summary | 22 | | | 5.2 | Results | 23 | | | 5.3 | Policy recommendations | 23 | | RE | FER | ENCES | .24 | | ΑP | PEN | DIX | 27 | # LIST OF TABLES | Table 1 – Values for key elasticities in UPGEM9 | |--| | Table 2 – Final categorisation of realistic export opportunities for South Africa | | Table 3 – Trade and output indicators (R million, 1998 Prices) | | Table 4 – Observed percentage change to selected exogenous variables (from the base case) | | Table 5 – All manufacturing – distributional results – real household consumption | | Table 6 – Basic metal products – distributional results – real household consumption | | Table 7 – Transport equipment – distributional results – real household consumption | | Table 8 – Machinery – distributional results – real household consumption | | Table 9 – Chemicals – distributional results – real household consumption | | Table 10 – Electrical machinery – distributional results – real household consumption | | Table 11 – All manufacturing – household-specific consumption-price indexes | | Table 12 – Basic metal products – household-specific consumption-price indexes | | Table 13 – Transport equipment – household-specific consumption-price indexes | | Table 14 – Machinery – household-specific consumption-price indexes | | Table 15 – Chemicals – household-specific consumption-price indexes | | Table 16 – Electrical machinery – household-specific consumption-price indexes | | Table 17 – Top 10 new export opportunities in African, BRICS and N-11 countries for Basic metal products | | Table 18 - Top 10 new export opportunities in African, BRICS and N-11 countries for Transport equipment | | Table 19 - Top 10 new export opportunities in African, BRICS and N-11 countries for Machinery21 | | Table 20 – Top 10 new export opportunities in African, BRICS and the N-11 countries for Electrical machinery | | Table 21 – Top 10 new export opportunities in African, BRICS and N-11 countries for Chemicals 22 | ## LIST OF ABBREVIATIONS/ACRONYMS BRICS Brazil, Russia, India, China and South Africa CES Constant Elasticity of Supply CGE Computable General Equilibrium CPI Consumer Price Index DSM Decision Support Model GDP Gross Domestic Product HHI Herfindahl-Hirshmann-Index IPAP Industrial Policy Action Plan ITAC International Trade Administration Commission MCEP Manufacturing Competitiveness Enhancement Programme MTEF Medium-Term Expenditure Framework NDP National Development Plan NGP New Growth Path ONDD Office National Du Ducroire RCA Revealed Comparative Advantage REOs Realistic Export Opportunities SA South Africa SARS South African Revenue Service SIC Standard Industries Classification Stats SA Statistics South Africa UPGEM University of Pretoria General Equilibrium Model ## **EXECUTIVE SUMMARY** The South African government recognises the importance of promoting manufactured exports as a means of ensuring sustainable economic growth and job creation. However, export promotion organisations have limited resources at their disposal and promoting all manufactured exports is not possible. Using a Computable General Equilibrium (CGE) model and Decision Support Model (DSM), this paper identifies those manufacturing sectors and markets that offer export, labour absorption and ultimately economic development potential for South Africa. The paper thus makes a valuable contribution to the literature while also offering useful insights to export promotion organisations tasked with developing sector-specific assistance programmes. #### 1. INTRODUCTION "While South Africa has maintained a reasonably sound trade balance, owing largely to high commodity prices, it is of concern that high value-added and labour-intensive exports are slowing" (South African National Planning Commission, 2011). ## 1.1 Economic climate South Africa, like many other developing countries, currently faces severe economic challenges, ranging from relentless unemployment and poverty to the reputational damage caused by high levels of corruption in both the public and private sectors. The South African government has been acutely aware of the economic turbulence that has gripped the country in recent years. In this regard, two of the cornerstones of the NDP (National Planning Commission, 2011) are to increase employment from 13 million to 24 million in the period 2010 to 2030, and to achieve an annual GDP growth rate of 5.4% during the same period. The government recognises the pivotal role that manufacturing can and should be playing in stimulating economic and trade growth in South Africa which, in turn, could lead to higher labour absorption (National Planning Commission, 2011). The importance of establishing manufacturing as a driver of the South African economy, particularly as a creator of jobs and source of export revenue, is underlined in a number of government policy documents, including the New Growth Path (NGP), the National Development Plan (NDP) (National Planning Commission, 2011) and the Industrial Policy Action Plan (IPAP) (Department of Trade and Industry, 2011). In the NGP's public document entitled *The NGP: Framework* (EDD, 2011) the government places strong emphasis on investing in capital- and labour-intensive industries, thus putting the spotlight on manufacturing. However, the document stresses that the sustainable economic well-being of the manufacturing sector is dependent on new export markets being identified and developed. The National Planning Commission supports these sentiments by setting clear goals for South Africa in its National Development Plan (NDP), which incorporates strategies for growth up to 2030. South Africa has long benefited from the fact that it is richly endowed with natural resources. During periods when commodity prices have been high and the Rand relatively weak, the country has enjoyed strong returns from its export activities. However, volatility in commodity prices is common (Tsen, 2009), and in a commodity-rich economy, such price fluctuations can create uncertainty and dampen growth prospects. The NDP asserts that increased exports of value-added (but also labour-intensive) goods, along with a stronger skills base in the country, can help to offset the economic distortions brought about by fluctuating commodity prices and an unstable Rand. The document also emphasises that diversifying into value-added industries and boosting exports requires significant investment (National Planning Commission, 2011). This commitment at national level to support the manufacturing industry is reiterrated in IPAP 2012/13 to 2014/15 (Department of Trade and Industry, 2012). The latest revision of this document, IPAP2, outlines a strategy to diversify South Africa's export mix and address unemployment head on by placing greater emphasis on value-added manufactured and service exports (Department of Trade and Industry, 2012). In addition, numerous applications have been filed with the International Trade Administration Commission (ITAC) for increases, rebates and reductions of duties across a wide spectrum of sectors (Department of Trade and Industry, 2012). Furthermore, the Minister of Finance, Pravin Gordhan, has released R5.8-billion over the course of the current three year Medium-Term Expenditure Framework (MTEF) towards the Manufacturing Competitiveness Enhancement Programme (MCEP). The MCEP aims to attract, and instil more confidence in, potential investors in South Africa's manufacturing sector in today's uncertain economic climate by creating more opportunities in labour-intensive and value-added industries (Department of Trade and Industry, 2011). The various government documents cited above are unanimous in their view that manufacturing in South Africa needs a shot in the arm so that production and exports can be significantly enhanced. ## 1.2 South Africa's manufacturing outlook Despite the national preoccupation with the state of manufacturing in South Africa, the country has witnessed a slowdown in its manufactured exports in recent years. Imports are growing at a much faster rate than exports. Trade data for the period January-February 2012 to January-February 2013 shows a significant widening in South Africa's cumulative trade deficit from just under R24-billion to just over R34-billion (SARS, 2013). This can partly be ascribed to a decrease in demand from developed economies still recovering from the adverse effects of the global financial crisis (National Planning Commission, 2011). However, severe as it
was, the global financial crisis does not fully explain why South Africa continues to see a sharp rise in imports and an expanding current account deficit. This in itself is enough to justify a more aggressive approach to export promotion. According to the Department of Trade and Industry (2012:25-26), the mining sector's exports have been growing at a rapid pace in recent years, but this has been noticeably offset by the manufacturing sector's comparatively lacklustre export performance. Between the third quarter of 2011 and the third quarter of 2012, the value of manufactured exports grew by 6.8%. However, this was overshadowed by an increase of 17.2% in the value of imports during this period. Also, in the same time frame, the value of intermediate goods exported fell from around R68-billion to R65-billion, while imports of intermediate goods rose in value from R71-billion to R80-billion. The negative trade balance in the manufacturing sector is not a new phenomenon - in fact, the sector has not seen a positive trade balance since the second quarter of 2002, reinforcing the fact that manufacturing has persistent and fundamental weaknesses. During the global financial crisis, the manufacturing sector's year-on-year average production growth rate fell to -20%. Even though it is back in positive territory, the growth rate is not nearly sufficient to make a meaningful contribution to national goals. For example, a preliminary report issued recently by Statistics SA on manufacturing production and sales reveals that between November 2012 and November 2013, manufacturing output grew by a mere 0.3%. Seasonally adjusted figures for the three months ending November 2013 show that six of the 10 manufacturing divisions in the country recorded negative growth when compared with the previous three months (Stats SA, 2014). Of growing concern, too, is the fact that the number of people employed in the manufacturing sector decreased by 0.2% between the third quarter of 2011 and the third quarter of 2012 (Industrial Development Corporation, 2012). More statistics produced by Statistics SA corroborate this worrying trend, showing that manufacturing employment declined by 1.3% in real terms between 2003 and 2010 (Stats SA, 2012). In 2011, the respective contributions of the three main economic sectors to South Africa's GDP were as follows (Stats SA, 2013): - Primary 12.3% - Secondary 19.4% - Tertiary 68.3% Despite the critical role it plays in the South African economy, the manufacturing sector's contribution to GDP has declined in real terms from 19% in 1993 to 17% in 2012. Manufacturing plays an even less prominent role in the provincial economies, with the greatest contribution being recorded in KwaZulu-Natal (15.8% of provincial GDP) and Gauteng (13.5% of provincial GDP) (Stats SA, 2013). Clearly, South Africa's manufacturing sector is not growing its exports in line with national goals. In addition, not only does the sector appear to be failing to create more jobs but it is struggling to retain current levels of employment. ## 1.3 Focused export promotion Although there is an undeniable link between a buoyant manufacturing sector and sustainable economic growth, various studies show that not only does directing all promotional efforts at manufactured exports require near unlimited resources, but not all export opportunities are realistic or have the power to deliver profitable returns (Papadopoulos & Denis, 1988; Kumar *et al.*, 1994; Cardozo *et al.*, 2003). For an export venture to succeed, it is imperative that the right markets are selected. To this end, two steps must precede and lay the foundation for an active export promotion drive: i) those manufacturing sectors with the highest economic and employment growth potential (using their various linkages) must be identified, and ii) new export opportunities in these identified manufacturing sub-sectors should be determined. Consequently, the aim of this paper is, firstly, to determine which sectors within the manufacturing industry as a whole would benefit the economy most (relative to other manufacturing sectors) in terms of economic and employment growth if exports in such sectors were to increase. The export opportunities in these sectors will then be explored, and new export opportunities will be identified. ## 1.4 Paper outline A brief literature overview will be conducted to show the global progression from newly industrialised economies to manufacturing-led economies. In this regard, it will be emphasised that when such economies find markets abroad for their manufactured goods, they will have much greater prospects of achieving sustainable economic and employment growth. A Computable General Equilibrium (CGE) model will be used to determine the possible economy-wide effects, specifically with respect to potential labour absorption, of increasing export volumes across a broad range of manufacturing sectors. Those sectors that have the greatest potential to positively influence economic growth and labour absorption will be selected. A Decision Support Model (DSM) will also be applied to identify the export opportunities associated with the chosen manufacturing sectors. The DSM was first developed by Cuyvers *et al.* (1995:173-186) to identify the product-(destination) country combinations with the highest export potential for a specific country. The model's primary purpose was to give export promotion organisations a more scientific means of determining the most promising opportunity areas which would be deserving of promotional assistance. The DSM methodology starts by considering all possible countries and products world-wide. Using four sequential filters, the DSM eliminates less interesting/promising product-country combinations with a view to categorising and prioritising realistic export opportunities (REOs) for the country to which the model is applied. In respect of each possible export destination, the model considers factors such as macroeconomic size and growth, size and growth of import demand, market concentration and various barriers to entry, such as shipping time and cost, logistical efficiency, *ad valorem* tariffs and non-tariff barriers. The outcome of the whole analytical exercise will be the identification of new export opportunities (product-country combinations) in each of the top five manufacturing sectors that were revealed through the application of the CGE. On the basis of these focused results, export promotion organisations in South Africa will be able to allocate their limited resources in a more efficient manner, knowing that the export opportunities revealed per manufacturing sector will have the greatest prospects of positively impacting economic growth and job creation in the country. The study makes a valuable contribution to the literature as it highlights how an employment-driven approach to export promotion can produce long-term dividends for the manufacturing sector in South Africa. ## 2. LITERATURE OVERVIEW The literature overview takes a brief look at the progression from industrialised economies to those powered by their manufacturing sectors. Special attention is given to manufactured exports and how they deliver value to an economy in the form of sustainable economic and employment growth. ## 2.1 Industrialisation and manufacturing The late 18th century marked the start of a shift in countries' productive activities away from agriculture towards industry. Technological breakthroughs in the production of textiles, and the adoption of steam energy were two of the factors driving this change. This process, which saw labour output reach new and almost unprecedented levels (Szirmai, 2012), can best be described as industrialisation (Kemp, 1978). According to Kemp (1989), industrialisation is widely recognised as a stimulant to growth, as reflected in rising per capita income and a more well-rounded and productive economy. Industrialisation is traditionally viewed as having started in Britain, from where it spread to Europe and North America in the early 19th century. Not all countries were able to embrace change with the same degree of success, and this led to the phenomenon of 'advanced' countries and more 'backward' countries. The former group of countries largely had an industrial orientation, with changing lifestyles and attitudes to work signalling the start of a new, modern era. The latter group of countries remained heavily dependent on agriculture, trapped in traditional economic pursuits and a cycle of underdevelopment. The uneven spread of industrialisation since the middle of the 19th century was the key factor contributing to the stark divisions we see in the world today between the developed and developing economies (Lewis, 1978a, b; Maddison, 2001, 2007). The developed economies had significant manufacturing capacity, which created a strong demand for primary agricultural and mining goods to sustain the high levels of output. As is an all-too-frequent phenomenon today, the developing economies supplied the developed economies with primary goods as inputs in their manufacturing industries, only to repurchase these goods from the developed economies – except they took the form of finished products - which they would use to once more produce primary agricultural and mining goods. It should be noted that advances in the areas of technology and infrastructure helped to facilitate and streamline this process of international exchange (Szirmai, 2012). It is clear from the literature that industrialisation played a significant role in changing the character of manufacturing so that it became a source of value to an economy. Various studies (Kuznets, 1966; Chenery *et al.*, 1986; Chenery & Srinivasan, 1988) that focus on industrialising economies as well as the developed economies of today show that at an aggregate level, economic development is characterised by structural change that is marked by the initial growth
and eventual decline of industries. This structural change is seen to follow three stages: i) primary goods (mainly agricultural) production is the dominant economic activity, ii) industrialisation takes centre stage, and then iii) the developed economy emerges. Chenery *et al.* (1986) found that during the period of industrialisation in the USA, per capita income rose from \$400 to \$2,100 by 1970. Furthermore, a study by Wells and Thirlwall (2003), which analysed data on 45 African countries covering the period 1980 - 1996, revealed that the GDP growth rate was strongly and positively linked to the extent to which manufacturing grew faster than agriculture and services. From the literature it is clear that industrialisation has positive effects on manufacturing output and employment growth, which in turn provide positive inducements to economic growth and development. ## 2.2 Trade, growth and employment Trade is a great generator of economic well-being (Appleyard *et al.*, 2010). The neoclassical theory of international trade, as proposed by Heckscher (1919) and Ohlin (1933), assumes that countries take advantage of the exogenous differences in resources, technology and taste that exist between trading parties. Trade then yields productivity gains and helps with the flow of goods internationally. However, the new trade theory proposed by Helpman and Krugman (1989) reverses some of the unrealistic assumptions of the neoclassicists. This theory assumes imperfect competition and increasing returns to scale. Yet gains from trade are still attainable (Singh, 2011). In contrast to these trade theories, the neoclassical theory of economic growth (Solow, 1956; Swan, 1956) does not recognise the role of trade in bringing about economic growth. Rather, there is the assumption that an increase in factor inputs (capital and labour) drives economic growth, and any residual growth values are attributed to exogenous technological progress which is not affected by trade. The post-neoclassical endogenous theory of economic growth (Romer, 1986; Lucas, 1988) specifically models these technological advances and proposes that endogenous factors, including trade, do have positive effects on productivity and economic growth. This positive relationship between trade and economic growth forms the basis of this particular study. Recent findings by Babatunde *et al.* (2012:875) indicate that even though exports can drive growth, this result does not always correlate directly with more labour absorption. Certain industries are more conducive to increasing employment than others. Various factors come into play when determining whether an industry would absorb more labour as a result of increased trade. High growth in itself is a prerequisite to alleviating poverty. However, high growth on its own does not alleviate poverty. An empirical study on the relationship between foreign trade and employment in the Southwest minority region of China (Xiong, *et al.*, 2012) found that GDP growth and trade can promote employment growth, while import activity by itself cannot promote employment effectively. In a study conducted by Kucera *et al.* (2012:1126) on the effects of trade contractions on employment as a result of the global financial crisis, it was revealed that trade is positively correlated to employment. Based on import mirror data from the USA and the EU, an estimated 886 000 jobs were lost and a possible 77 000 "possible jobs created" were lost in South Africa due to contractions in the country's exports as a result of the global crisis. Similarly, Indian manufacturing employment declined during the crisis as a result of trade contractions. The results of a study conducted by Colen, Maertens and Swinnen (2012:1086-1087) indicate that as an industry positions itself for higher volumes of exports, it enhances the employment conditions and opportunities, and extends the period of employment for poor households in such an industry. Kotabe and Czinkota (1992), in their study on government promotion of manufactured exports, found that such exports not only increase employment in the sector but lead to an increase in non-manufacturing-related employment. It was also noted that a doubling of US exports in the first half of the 1980s accounted for more than 80% of the increased number of jobs in the manufacturing sector (1992:639). From the above discussion, it can be deduced that increased manufactured exports have a strong and positive correlation with employment and employment growth. #### 3. METHODOLOGY This section details the two methodologies applied in the study, namely the Computable General Equilibrium (CGE) and the Decision Support Model (DSM) methods, as well as the underlying assumptions and inherent limitations of each method. ## 3.1 The CGE model In this section we provide a brief description of the model used to assess the impact of increased manufactured exports on selected macroeconomic and labour market indicators in South Africa. Since we are interested in the economy-wide impacts, and in particular the "relative" impacts, of increased exports in each of the manufacturing sectors at the macro and meso/sector levels, the most appropriate modelling tool is a CGE model. A CGE model is "an economy-wide model that includes feedback between demand, income and production structure, and where all prices adjust until decisions made in production are consistent with decisions made in demand" (Dervis et al., 1985:132). The model is applied (or computed) using economy-wide, consistent data pertaining to a particular economy, as is normally contained in a Social Accounting Matrix (SAM). In this particular case, we use the most recent SAM for South Africa (i.e. the official 1998 SAM) which is published by Statistics South Africa (Stats SA, 2001). Other parameters, notably expenditure elasticities, are obtained from outside the model (typically from econometric studies or by making plausible guesstimates) (Naudé & Coetzee, 2004). In this paper we use a South African adaptation of ORANI-G¹ to solve the model. It is known as the UPGEM (University of Pretoria General Equilibrium Model) and was developed for South Africa by the University of Pretoria (see, for example, www.monash.edu.au/policy/oranig.htm for a list of all the country models that have been built in the ORANI-G style). The specific version of the UPGEM model used in these simulations is comparative-static and distinguishes 32 sectors (Bohlmann &Van Heerden, 2005). This is an older version of the UPGEM (later versions exist where, for example, 6 additional agricultural and 6 additional energy-related sectors have been added to the original 27 economic sectors in the official 1998 SAM—see Van Heerden et al. (2006); recursive-dynamic (year-on-year) capabilities have been added—see Bohlmann (2012)), which distinguishes 32 sectors 12 household/income types and 4 ethnic groups (Bohlmann & Van Heerden, 2005). However, for the purposes of this study, the older version is still sufficient to generate a relative picture of the benefits of increased manufactured exports. For a more detailed exposition of the modelling approach followed in UPGEM, see Horridge (2000) and for recent applications of different versions of the model, see Bohlmann and Van Heerden (2005), Van Heerden et al. (2006), Van Heerden et al. (2008) and Bohlmann (2012). ## 3.1.1 Labour demand and the CGE equations The main equations used in this model are derived from the constrained optimisation of neo-classical production and utility functions (Horridge, 2000). Producers choose inputs to minimise the costs of a given output, subject to non-increasing returns to scale industry functions. Consumers are assumed to choose their purchases in order to maximise utility functions subject to budget constraints. Production factors are paid according to their marginal productivity (Van Heerden *et al.*, 2008). At the equilibrium level these models' solutions provide a set of prices that clear all commodity and factor markets and make all individual agents' optimisations feasible and mutually consistent. The behavioural equations of the model are augmented by sets of equations showing the flows of income in the economy as well as sets of equations defining an economic equilibrium in each market as the - ¹ ORANI-G ('G' stands for 'generic'), an applied general equilibrium model, is a version of ORANI which serves as a basis from which to construct new models. It has been applied to many countries, including China, Thailand, Korea, Pakistan, Brazil, the Philippines, Japan, Ireland, Vietnam, Indonesia, Venezuela, Taiwan, South Africa and Denmark. point where supply equals demand (Van Heerden *et al.*, 2008). Equilibrium is reached through adjustments in prices and/or quantities. As the focus of this paper is on the labour market impact of increased manufactured exports, some comments on the modelling of labour demand in the UPGEM may be appropriate. Firstly, it should be noted that the demand for labour, in contrast to the demand for other primary factor inputs, is disaggregated in the UPGEM according to occupation group and race (Van Heerden *et al.*, 2008). The occupational composition of labour demand in each industry is also derived from an optimisation problem. An industry can choose different combinations of occupations in their labour force in order to minimise their total labour costs. This follows a CES-production function which results in an occupation-specific demand for labour function (Van Heerden *et al.*, 2008:108). The occupation-specific demand for labour is a function of the composite labour demand and the relative prices of occupation-specific labour and an elasticity of substitution. Substitution between different occupations will take place if the relative wages of the occupations change. In the current version of the UPGEM, relatively conservative elasticities
of substitution between these occupations are assumed (Horridge, 2000). The elasticities used for the CES functions in the model are summarised in Table 1. Table 1 – Values for key elasticities in UPGEM | Export demand elasticities | -5 | |---|------------| | CES between imported and domestic goods | 0.5 to 1.5 | | CES between capital, labour and land | 0.5 to 1.0 | | CES between labour skill groups | 0.5 | [Source: Van Heerden et al. (2008:109)] After choosing the occupation-specific labour inputs, an industry must, according to the model, decide from which race group this occupation-specific labour will have to be drawn. In the present model it is assumed that an industry will minimise its total occupational labour costs by employing the cheapest combination of race-specific, occupation-specific labour (Horridge, 2000). Again a CES-production function is used in the optimisation procedure, leading to an occupation-specific, race-specific labour demand function. This equation will be a function of the occupation-specific demand and the relative wages of race-specific wages. Hence, if relative wages between racial groups change, employers will substitute within an occupation group towards a specific race group (Horridge, 2000). Scientifically, the occupational composition of labour demand in each industry is derived from the following optimisation problem (Horridge, 2000). Inputs of occupation-specific labour are used to minimise the total labour cost for each industry, $$\sum_{i} P_{i} X_{i} \ (i = 1, 2, ..., 32),$$ subject to the production function, $$Z_i = \left(\sum_j \delta_j [X_j]^{-\rho}\right)^{-1/\rho}$$ (i = 1,2,...,32 and j = 1,...,12), where $$\sigma = \frac{1}{1+\rho}$$ is an elasticity of substitution between occupational groups. Similarly, the racial composition of labour demand for each industry is the optimisation problem of minimising the total labour cost for each occupational group, $$\sum_{j} P_j X_j \ (j=1,\ldots,12),$$ subject to the production function, $$Z_j = \left(\sum_k \delta_k [X_k]^{-\rho}\right)^{-1/\rho}$$ $(j = 1, 2, ..., 32 \text{ and } k = 1, 2, ..., 4),$ where σ is an elasticity of substitution between the four race groups (i.e. white, coloured, Asian and black). Secondly, wages in the UPGEM are assumed to be flexible, and will adjust according to the closure relating to the primary factor market (Horridge, 2000). The average nominal wage is, however, indexed to the consumer price index (CPI), implying a constant average real wage rate. The fixed relationship between average nominal wages and the CPI can be changed by adjusting coefficients to some value less than unity. If chosen, for example, at a value of 0.6, then wages would on average be 60% indexed. Movements in the average real wage rate can also be incorporated by adjusting real wages exogenously. Finally, the manner in which the labour market specification is "closed" is important as it will influence the results from simulations. Accordingly, the next section discusses the short-run closure applied to perform the simulations reported in the paper. #### 3.1.2 Specification of the economic environment The UPGEM model requires an assumption about the macroeconomic environment in which the simulations are to take place. Results are presented below for a short-run environment in which there are assumed to be significant rigidities in the economy. To implement the simulation, a number of further assumptions were made which related to the closure of the model. An in-depth discussion on the closure of CGE models can be found in Horridge (2000). See also Bohlmann and Van Heerden (2005), Van Heerden *et al.* (2006) and Van Heerden *et al.* (2008) for a discussion on the short-run closures specific to the UPGEM. In the present case, each of the simulations was conducted using a short-run comparative static closure for the model. This implies that the impact reflects the change in a short period of time (approximately 2 to 3 years) before investment can react to the changed market conditions. Here, land, the rate of return on capital, employment, the trade balance, technology variables and the real wage (*realwage*), amongst others, are taken as exogenous. On the income side of GDP, we have realwage and capital exogenous (and real cost of labour) and the nominal rate of return on capital to adjust. On the expenditure side of GDP, we have aggregate investment, government consumption and inventories as exogenous, while consumption and the trade balance are left to adjust. This allows us insight into the effect of the increased exports on South Africa's consumption and competitiveness. All technological change variables and all tax rates are exogenous in the closure. The model differentiates between 3 different labour groups, namely high-skilled, medium-skilled and low-skilled. A fixed supply of highly skilled and skilled labour in the short run is assumed, but with a perfectly elastic unskilled labour supply. This assumption reflects the South African labour market realistically and allows testing of the effect of increased exports on the levels of employment of differently skilled labour. Finally, the nominal exchange rate is set to be the numeraire in each of the simulations. ## 3.1.3 Simulations We use the UPGEM model to simulate a hypothetical increase in exports (i.e. of 10 percent) for each of the manufacturing sectors in the model, and use the resulting economy-wide influences to identify the top manufacturing sectors for investment/promotion purposes. More specifically, we compare the various simulations in the short run, and compare their respective impacts on (a) economic growth, (b) employment, and (c) consumption patterns of the poor in South Africa. Because only limited funds are available to promote the exports of any product, the idea is to identify those sectors that will have the greatest relative benefits throughout the economy and then to identify specific products within those sectors by using the results of the DSM. The UPGEM model has a variable depicting the exports per sector (i.e. x4). This variable, for each of the 20 manufacturing sectors, is exogenised to enable the implementation of the hypothetical shock to each sector. All results presented in the tables below are in the form of percentage changes from a base case (or business as usual) scenario. The economy-wide simulation results presented from the UPGEM analysis generally serve to highlight the extent to which the different manufacturing sectors are connected with the rest of the economy. It should be noted, however, that the simulation results should be interpreted as being indicative of the actual impact of increased exports in the different manufacturing sectors on the South African economy. ## 3.2 The Decision Support Model for identifying export opportunities The Decision Support Model (DSM) is based on Walvoord's model for selecting foreign markets (Walvoord as in Jeannet & Hennessey, 1998:137-140). Walvoord's idea was that certain filters or screenings should be used to evaluate international market opportunities. Even though Walvoord's model focuses on selecting foreign markets for a firm, Cuyvers *et al.*(1995:173-186) used the basic structure of Walvoord's model to construct a product-country-level market selection model to aid government export promotion agencies. It is called the Decision Support Model (DSM) and it is used to identify realistic export opportunities for an exporting country. The DSM uses filters to remove the countries and products that do not present realistic export opportunities. These filters are listed and described below. ## Filter 1:Identifying preliminary market opportunities This filter considers two criteria: i) political and commercial risk that an exporter would face in the foreign market and ii) macroeconomic size and growth of the country. Political risk can be defined as anything that can occur in the importing country that would take on the same nature of a *force majeure* event. Commercial risk can be defined as the risk resulting from a deterioration in the importer's financial position that can lead to non-payment for the exporter (ONDD, 2011). Countries in the two highest risk categories of the ONDD are filtered out. The macroeconomic indicators used to determine the market size and growth are measured by using the gross domestic product, the gross domestic product per capita, and the short and long term growth rates. Countries falling below a cut-off value determined around the world averages are then filtered out. For more detail on the cut-off values, see Cuyvers, Steenkamp and Viviers (2012). ## Filter 2: Identifying possible opportunities In this filter, several attributes of all the HS 6-digit products are investigated for the remaining countries. The short and long term import growth rates as well as import market size are used as criteria to determine the size and growth of import demand for all the HS 6-digit products per country. Cut-off values depend on whether the exporting country for which the model is applied is specialised in exporting the product in question or not². If the exporting country is not specialised in exporting the product, the importing country's short- or long-term import growth rate of the product must be between one and two times (depending on the degree of specialisation) the world average import growth rate for the product. If, however, the exporting country for which the DSM is applied specialises in exporting the product, the importing country's import growth rate is allowed to be just below the world average import growth rate for the product. In terms of market size, the importing country's imports of the product in question must be above 2% and up to 3% of total world imports if the exporting country does not specialise in exporting the product. If, however, the exporting country for which the DSM is applied
specialises in exporting the product, the importing country's imports are allowed to be 2% of total world imports of the product. Only markets that are considered (i) relatively large (without necessarily showing adequate growth), (ii) growing in the short *and* long term (without necessarily being adequately large) or (iii) growing in the short and/or long term and are considered large markets, are selected to enter filter 3. ## Filter 3: Identifying probable and realistic export opportunities This filter considers the market concentration (filter 3.1) and accessibility (filter 3.2) of the potential export opportunities. Filter 3.1 considers the degree of concentration in the market in question as it is not easy to penetrate a market that is dominated by one or two competitors (Cuyvers *et al*, 2012). The Herfindahl-Hirshmann-Index (HHI)³ of Hirshmann (1964) is used to measure the degree of market concentration in each market (product-country combination). The cut-off value is established within a determined percentage of the standard deviation around the average for all the product-country combinations under consideration. A higher degree of concentration is allowed for larger, growing markets (Cuyvers *et al.*, 1995:180). $$RCA = \left(\frac{X_{i,j}}{X_{W,j}}\right) / \left(\frac{X_{i,tot}}{X_{W,tot}}\right)$$ with $X_{i,j}$ denoting country i's exports of product j; $X_{i,tot}$ denoting country i's total exports; $X_{w,j}$ denoting the world's (all countries) export of product j; and $X_{w,tot}$ denoting total exports in the world. $$HHI_{ij} = \sum \left(\frac{X_{k,ij}}{M_{tot,ij}}\right)^{2}$$ with $X_{k,i,j}$ denoting exports of a competitor country k to importing country i for product category j; and HHI=1 denoting that there is a monopolistic country supplier to the market. ² To calculate the exporting country's (country *i*) level of specialisation in exporting a particular product, the Revealed Comparative Advantage (RCA) of Balassa (1965) is used: ³ The Herfindahl-Hirshmann-Index is computed as follows (Hirshmann, 1964): The accessibility of the markets under consideration is measured in relation to the different barriers to entry (including shipping time and cost, logistical efficiency, and tariffs and non-tariff barriers) the exporting country will face in each market. A market accessibility index is calculated and a cut-off value is determined around the average index value for all the markets under consideration. To qualify for *filter 4*, the product-country combinations need to have both low concentration and low trade barriers (Cuyvers, *et al.*, 2012). Filter 4: Final analysis of opportunities In this filter the markets identified in filters 1 to 3 are categorised and prioritised, and no markets are eliminated. The strength of South Africa's position in each of the selected markets is determined by its relative market share. This involves determining South Africa's revealed comparative advantage in the product-country combinations emerging from filter 3, relative to the average revealed comparative advantage enjoyed by the top 6 competitors in each market (Cuyvers *et al.*, 2012). Each potential importing country is assigned to one of 20 cells (see Table 2) that reflect specific combinations of the size and growth of import demand (rows of Table 2, determined in filter 2) and South Africa's relative market share in each market (columns of Table 2, determined in filter 4). Table 2 – Final categorisation of realistic export opportunities for South Africa | | | South Africa's rela | ative market share | | |--|--------|----------------------|---------------------|---------| | | Small | Intermediately small | Intermediately high | High | | Large product/market | Cell 1 | Cell 6 | Cell 11 | Cell 16 | | Growing (short- & long-term) product/market | Cell 2 | Cell 7 | Cell 12 | Cell 17 | | Large product/market with short-term growth | Cell 3 | Cell 8 | Cell 13 | Cell 18 | | Large product/market with long-term growth | Cell 4 | Cell 9 | Cell 14 | Cell 19 | | Large product/market with short-
and long-term growth | Cell 5 | Cell 10 | Cell 15 | Cell 20 | [Source: Cuyvers, Steenkamp and Viviers (2012)] For more specific information on the methodology of the DSM, including the calculation of index values, cut-off values and more, see Cuyvers *et al.* (2012). ## 4. RESULTS In interpreting the results from the CGE model, we follow Adams' (2005) proposal that results first focus on macroeconomic impacts, and then move down towards industry/sector level impacts and household impacts. ## 4.1 CGE simulation results Before looking at the results of the simulations it is appropriate to highlight some of the macro variables of the model in the context of the importance of trade and output. Table 3 shows the structure of trade and output in the South African economy in 1998, the base year for the model. The 32 sectors are distinguished with only two of them not being tradable (electricity and building). The importance of trade in the remaining sectors varies substantially, ranging from nearly closed in trade, transportation and community services (exports constitute nearly 1% of output and imports 1% of domestic supply), to high net exporters in gold mining, other mining, leather, basic metal products and machinery (exports are above 20% of output), and high net importers in footwear, publishing and printing, machinery, electrical machinery, and transport equipment (imports are above 20% of domestic supply). The remaining sectors present a degree of openness that ranges from 2% to nearly 20% in terms of their share of exports to output and imports to domestic supply. Note that the CES substitution elasticities are higher for commerce, transportation and service sectors. Table 3 – Trade and output indicators (R million, 1998 Prices) | Sectors | Output (X) | Exports (E) | Exports /
Output (E/X)
(%) | Imports (M) | Imports / Domestic Supply (M/D) (%) | |----------------------------|------------|-------------|----------------------------------|-------------|-------------------------------------| | Agriculture | 48 493 | 6 630 | 14 | 4 707 | 10 | | Gold mining | 26 352 | 26 303 | 100 | 2 | 0 | | Other mining | 56 444 | 41 176 | 73 | 14 525 | 26 | | Food processing | 67 007 | 7 664 | 11 | 9 257 | 15 | | Beverages | 14 259 | 369 | 3 | 1 227 | 9 | | Tobacco | 14 305 | 335 | 2 | 956 | 8 | | Textiles | 10 226 | 2 366 | 23 | 4 203 | 45 | | Clothing | 11 059 | 2 084 | 19 | 2 772 | 25 | | Leather | 2 229 | 1 429 | 64 | 1 049 | 48 | | Footwear | 2 608 | 205 | 8 | 1 708 | 64 | | Wood | 10 527 | 2 972 | 28 | 2 199 | 22 | | Paper | 23 278 | 6 143 | 26 | 3 447 | 16 | | Printing and publishing | 14 255 | 633 | 4 | 6 868 | 52 | | Chemicals | 89 711 | 25 152 | 28 | 28 071 | 33 | | Rubber | 5 238 | 1 073 | 20 | 2 026 | 40 | | Plastic | 10 283 | 1 209 | 12 | 2 388 | 26 | | Non-metallic minerals | 13 076 | 1 916 | 15 | 4 055 | 32 | | Basic metal products | 46 720 | 29 597 | 63 | 8 377 | 18 | | Fabricated metal products | 26 736 | 4 328 | 16 | 6 632 | 26 | | Machinery | 23 556 | 12 321 | 52 | 35 886 | 154 | | Electrical machinery | 20 022 | 6 922 | 35 | 32 006 | 165 | | Transport equipment | 50 257 | 18 580 | 37 | 34 905 | 72 | | Other manufacturing | 20 158 | 7 992 | 40 | 5 754 | 28 | | Electricity | 37 587 | - | - | - | - | | Building | 45 736 | - | - | - | - | | Civil engineering | 27 296 | 1 701 | 6 | - | - | | Trade | 156 885 | 294 | 0 | - | - | | Accommodation and catering | 25 593 | 9 909 | 39 | 8 437 | 37 | | Transport | 92 997 | 1 682 | 2 | 5 888 | 6 | |--------------------|---------|--------|---|-------|---| | Communication | 46 785 | 149 | 0 | - | - | | Financial services | 252 586 | 12 491 | 5 | - | - | | Community services | 73 647 | 6 569 | 9 | 575 | 1 | [Note: Manufacturing sectors are those indicated in the grey shaded area] [Source: Compiled using the UPGEM database] Table 4 (along with Table A1 in the Appendix) summarises the macroeconomic effects of the simulations and Tables A2-A7 (refer to the Appendix) report the sector results separately. The analysis focuses explicitly on the top five manufacturing sectors in terms of their impact on the overall economic output measured by GDP and employment. We first analyse the aggregate results. In aggregate terms, the experiment of increasing the exports of each of the manufacturing sectors, which is the same as opening the economy for these sectors, prompted more productivity and inflation, with the GDP deflator rising by 1.81% for all manufacturing sectors, and by 0.26%, 0.13%, 0.08%, 0.35% and 0.05% for each of the top five highest performing manufacturing sectors in relation to the base year and a GDP growth rate of 0.71% when the increase is applied to all sectors, and by 0.14% in the simulation where basic metal products' exports are increased. The aggregate impact on the labour market is positive across all of the reported simulations (refer to Table 4), with an overall reduction in unemployment for all types of labour. Table 4 – Observed percentage change to selected exogenous variables (from the base case) | | 4.11 | Top 5 sec | tors (highest to | lowest) in terms | of economy-wid | e benefits | |------------------------------------|-----------------|----------------------|---------------------|------------------|----------------|-------------------------| | Selected macroeconomic variables | All
Manufac. | Basic metal products | Transport equipment | Machinery | Chemicals | Electrical
machinery | | Real GDP | 0.714 | 0.138 | 0.096 | 0.076 | 0.075 | 0.033 | | GDP price deflator | 1.811 | 0.257 | 0.126 | 0.082 | 0.345 | 0.049 | | Labour (Aggregate employment) | 1.538 | 0.337 | 0.201 | 0.162 | 0.125 | 0.065 | | Average Real Wage Rate* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Domestic Consumption* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Consumer Price Index | 1.440 | 0.138 |
0.107 | 0.061 | 0.290 | 0.039 | | Government Consumption* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Exports (Volume Index FOB) | 4.599 | 0.802 | 0.596 | 0.387 | 0.608 | 0.214 | | Export Price Index | 1.586 | 0.383 | 0.086 | 0.072 | 0.282 | 0.039 | | Imports (Volume Index CIF) | 2.761 | 0.434 | 0.343 | 0.177 | 0.428 | 0.129 | | Import Price Index* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Balance of Trade (% of GDP) | 0.011 | 0.003 | 0.001 | 0.001 | 0.002 | 0.000 | | Terms of Trade | 1.586 | 0.383 | 0.086 | 0.072 | 0.282 | 0.039 | | Nominal Exchange Rate* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Real devaluation (Competitiveness) | -1.779 | -0.256 | -0.126 | -0.081 | -0.344 | -0.049 | [Note: * Exogenous by assumption] [Source: UPGEM simulation results] The cause-effect logic of each of the simulations is that as a result of the increase in manufactured exports, firms would escalate their demand for labour (e.g. for firms to increase production and with sticky wages in the short run, closure requires an increase in employment). The increase in aggregate employment implies a positive shift in the cost functions of firms, subject to the direct and indirect labour intensity of their specific production structures. This implies an expansion of exports so that the equality between the given world prices and the marginal costs of export supplies is restored in all industries. In addition, domestic supply will increase because the prices of domestic products relative to the import prices increase. Total production therefore rises and is propagated through the interindustry input-output linkages. Since producers are assumed to maximise profits, employment expansion is the result of increased outputs (as a result of increased exports) combined with sticky (and even increasing) wage rates (average real wages assumed fixed). The employment growth in turn leads to a higher wage bill being paid to labour, with the resulting feedback of increasing household income. As an example, in the export expansion of basic metal products, GDP ends up at 0.14 per cent⁴ higher per annum than that of the base case, while employment increases even more—that is, by 0.34 per cent—as a result of the overall increase in export volumes of 0.8 per cent. Domestic consumption is assumed fixed (but will change on income group level), and the resulting general domestic price increase that needs to take place to achieve equilibrium is approximately 0.14 per cent, while the imported price index stays constant as South Africa is assumed to be a price taker in the international market. Import volumes continue to increase at 0.43 per cent due to the South African economy's (and the basic metal product sectors') high import propensity. Tables 5 to 16 present the distributional results of the 10 per cent increase in manufactured exports in terms of changes in real household consumption and the corresponding changes in household-specific, consumption-price indexes for each of the top five manufacturing sectors (as mentioned earlier). Table 5 – All manufacturing – distributional results – real household consumption | Real Household
Consumption | | Population Group | | | | | |-------------------------------|-------|------------------|-------|--------|---------|--| | Income Group | White | Coloured | Asian | Black | Average | | | q1 | 0.054 | 0.230 | 0.133 | -0.166 | 0.063 | | | q2 | 0.061 | 0.200 | 0.127 | -0.140 | 0.062 | | | q3 | 0.084 | 0.184 | 0.128 | -0.128 | 0.067 | | | q4 | 0.092 | 0.182 | 0.132 | -0.128 | 0.070 | | | d9 | 0.095 | 0.179 | 0.132 | -0.166 | 0.060 | | | d10 | 0.096 | 0.150 | 0.106 | -0.221 | 0.033 | | | Average | 0.080 | 0.188 | 0.126 | -0.158 | 0.059 | | Table 6 – Basic metal products – distributional results – real household consumption | Real Household
Consumption | Population Group | | | | | | | |-------------------------------|------------------|----------|--------|--------|---------|--|--| | Income Group | White | Coloured | Asian | Black | Average | | | | q1 | 0.053 | -0.239 | -0.212 | -0.022 | -0.105 | | | | q2 | 0.057 | -0.238 | -0.207 | -0.015 | -0.101 | | | | q3 | 0.071 | -0.236 | -0.200 | -0.013 | -0.095 | | | | q4 | 0.079 | -0.236 | -0.197 | -0.013 | -0.092 | | | | d9 | 0.082 | -0.240 | -0.197 | -0.021 | -0.094 | | | | d10 | 0.083 | -0.249 | -0.203 | -0.038 | -0.102 | | | | Average | 0.071 | -0.240 | -0.203 | -0.020 | -0.098 | | | _ ⁴ If we translate this in terms of GDP growth and constant 2000 real GDP monetary value, it would yield approximately R2.79-billion relative to 2014 real GDP for South Africa (R1,994.6-billion x 0.14/100). In terms of forward looking growth, this can be interpreted such that if South Africa targets 6 per cent growth for a given year, the impact of this scenario would result in the economy realising only 6.2 per cent growth. (Source of data: South African Reserve Bank online statistics at www.resbank.co.za.) Table 7 – Transport equipment – distributional results – real household consumption | Real Household
Consumption | Population Group | | | | | | |-------------------------------|------------------|----------|--------|--------|---------|--| | Income Group | White | Coloured | Asian | Black | Average | | | q1 | 0.027 | 0.065 | 0.008 | -0.020 | 0.020 | | | q2 | 0.025 | 0.056 | 0.007 | -0.021 | 0.017 | | | q 3 | 0.018 | 0.051 | -0.002 | -0.024 | 0.011 | | | q4 | 0.014 | 0.050 | -0.008 | -0.024 | 0.008 | | | d9 | 0.012 | 0.042 | -0.008 | -0.030 | 0.004 | | | d10 | 0.012 | 0.037 | -0.008 | -0.046 | -0.001 | | | Average | 0.018 | 0.050 | -0.002 | -0.028 | 0.010 | | Table 9 – Chemicals – distributional results – real household consumption | Real Household
Consumption | Population Group | | | | | | |-------------------------------|------------------|----------|--------|--------|---------|--| | Income Group | White | Coloured | Asian | Black | Average | | | q1 | 0.039 | -0.033 | 0.020 | -0.048 | -0.006 | | | q2 | 0.040 | -0.043 | 0.009 | -0.042 | -0.009 | | | q3 | 0.045 | -0.055 | 0.002 | -0.041 | -0.012 | | | q4 | 0.050 | -0.058 | 0.002 | -0.041 | -0.012 | | | d9 | 0.052 | -0.053 | 0.002 | -0.052 | -0.013 | | | d10 | 0.053 | -0.054 | -0.003 | -0.054 | -0.015 | | | Average | 0.047 | -0.049 | 0.005 | -0.046 | -0.011 | | [Source: UPGEM simulation results] Table 8 – Machinery – distributional results – real household consumption | Real Household
Consumption | Population Group | | | | | | |-------------------------------|------------------|----------|--------|--------|---------|--| | Income Group | White | Coloured | Asian | Black | Average | | | q1 | 0.033 | 0.023 | -0.035 | -0.025 | -0.001 | | | q2 | 0.032 | 0.017 | -0.036 | -0.026 | -0.003 | | | q3 | 0.029 | 0.012 | -0.040 | -0.028 | -0.007 | | | q4 | 0.028 | 0.011 | -0.042 | -0.028 | -0.008 | | | d9 | 0.028 | 0.009 | -0.042 | -0.033 | -0.010 | | | d10 | 0.028 | 0.009 | -0.041 | -0.039 | -0.011 | | | Average | 0.030 | 0.014 | -0.039 | -0.030 | -0.007 | | Table 10 – Electrical machinery – distributional results – real household consumption | Real Household
Consumption | Population Group | | | | | |-------------------------------|------------------|----------|--------|--------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 0.005 | 0.025 | -0.019 | -0.002 | 0.002 | | q2 | 0.005 | 0.021 | -0.020 | -0.004 | 0.001 | | q3 | 0.004 | 0.018 | -0.021 | -0.005 | -0.001 | | q4 | 0.003 | 0.017 | -0.021 | -0.005 | -0.002 | | d9 | 0.003 | 0.018 | -0.021 | -0.008 | -0.002 | | d10 | 0.003 | 0.017 | -0.021 | -0.009 | -0.003 | | Average | 0.004 | 0.019 | -0.021 | -0.006 | -0.001 | Overall the group that is affected the most negatively by the increase in manufactured exports is black South Africans—across all income groups and all of the reported simulation results. This is to be expected as labour (employment) and thus household income in this group are unfavourably affected by the negative feedback effects that flow through to the production of sectors that employ this group of labour. The same applies to high-income (d10) black households which experience a 0.22 per cent decline in real consumption expenditure in the simulation where all manufacturing exports increase. But the negative impacts are not only confined to black or high-income black households. Real consumption expenditure of middle- to high-income coloured and Asian households is also negatively affected. Some further investigation is required into the SAM applied as the database to this model in Table 11 – All manufacturing – household-specific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 1.526 | 1.394 | 1.448 | 1.407 | 1.444 | | q2 | 1.519 | 1.425 | 1.455 | 1.381 | 1.445 | | q3 | 1.496 | 1.441 | 1.454 | 1.369 | 1.440 | | q4 | 1.488 | 1.442 | 1.450 | 1.369 | 1.437 | | d9 | 1.484 | 1.446 | 1.450 | 1.407 | 1.447 | | d10 | 1.483 | 1.476 | 1.477 | 1.463 | 1.475 | | Average | 1.499 | 1.437 | 1.456 | 1.399 | 1.448 | Table 13 – Transport equipment – householdspecific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 0.107 | 0.091 | 0.105 | 0.090 | 0.098 | | q2 | 0.108 | 0.100 | 0.107 | 0.092 | 0.102 | | q3 | 0.115 | 0.104 | 0.115 | 0.095 | 0.107 | | q4 | 0.119 | 0.105 | 0.121 | 0.095 | 0.110 | | d9 | 0.121 | 0.114 | 0.121 | 0.100 | 0.114 | | d10 | 0.122 | 0.118 | 0.122 | 0.117 | 0.120 | | Average | 0.115 | 0.105 | 0.115 | 0.098 | 0.109 | Table 15 – Chemicals – household-specific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group
| White | Coloured | Asian | Black | Average | | q1 | 0.308 | 0.274 | 0.270 | 0.286 | 0.285 | | q2 | 0.307 | 0.283 | 0.281 | 0.279 | 0.288 | | q3 | 0.302 | 0.296 | 0.288 | 0.279 | 0.291 | | q4 | 0.297 | 0.299 | 0.288 | 0.279 | 0.291 | | d9 | 0.295 | 0.294 | 0.289 | 0.289 | 0.292 | | d10 | 0.294 | 0.295 | 0.293 | 0.292 | 0.294 | | Average | 0.301 | 0.290 | 0.285 | 0.284 | 0.290 | [Source: UPGEM simulation results] Table 12 – Basic metal products – householdspecific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 0.179 | 0.136 | 0.156 | 0.127 | 0.150 | | q2 | 0.175 | 0.135 | 0.151 | 0.120 | 0.145 | | q3 | 0.161 | 0.134 | 0.144 | 0.118 | 0.139 | | q4 | 0.153 | 0.133 | 0.141 | 0.118 | 0.136 | | d9 | 0.150 | 0.137 | 0.141 | 0.126 | 0.139 | | d10 | 0.149 | 0.146 | 0.147 | 0.144 | 0.147 | | Average | 0.161 | 0.137 | 0.147 | 0.126 | 0.143 | Table 14 – Machinery – household-specific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 0.062 | 0.053 | 0.061 | 0.051 | 0.057 | | q2 | 0.063 | 0.059 | 0.062 | 0.052 | 0.059 | | q3 | 0.066 | 0.064 | 0.066 | 0.054 | 0.063 | | q4 | 0.067 | 0.065 | 0.068 | 0.054 | 0.064 | | d9 | 0.067 | 0.067 | 0.068 | 0.060 | 0.066 | | d10 | 0.067 | 0.067 | 0.067 | 0.065 | 0.067 | | Average | 0.065 | 0.063 | 0.065 | 0.056 | 0.062 | Table 16 – Electrical machinery – householdspecific consumption-price indexes | Household CPI | Population Group | | | | | |---------------|------------------|----------|-------|-------|---------| | Income Group | White | Coloured | Asian | Black | Average | | q1 | 0.040 | 0.035 | 0.040 | 0.034 | 0.037 | | q2 | 0.041 | 0.039 | 0.041 | 0.035 | 0.039 | | q3 | 0.042 | 0.042 | 0.041 | 0.037 | 0.041 | | q4 | 0.042 | 0.042 | 0.041 | 0.037 | 0.041 | | d9 | 0.042 | 0.042 | 0.041 | 0.040 | 0.041 | | d10 | 0.042 | 0.042 | 0.042 | 0.041 | 0.042 | | Average | 0.042 | 0.040 | 0.041 | 0.037 | 0.040 | The sector results for each of the top five simulations appear in Tables A2-A7 (refer to the Appendix) and, as affirmed earlier, were selected for their impact on the overall economic output measured by GDP and employment. Overall, imports varied less than exports, as the former are usually more inelastic due to sectoral linkages in terms of usage of foreign goods as intermediate and capital inputs. As the results of this simulations show, as production volumes increase, production costs tend to increase, making exports more expensive and prompting a rise in domestic prices. All of the sectors that experienced drops in output saw a decline in their demand for labour, but the change in labour demand was more pronounced than the variation in output. Sectors that lend themselves more to trade, such as the gold mining, other mining, leather, basic metal products, and machinery sectors, had the largest variation in labour demand, while the less dependent sectors showed little variation in employment. This overall result seems to support the idea that export-led growth tends to favour employment in the sectors that are already trade-oriented. The results of the reported simulations show further that alongside the 20% increase in exports of individual manufacturing sectors, the output of the skilled labour-intensive sectors varied more, and that labour demand varied in the same direction as output. Most of the sectors experienced upturns in domestic prices, probably due to increased production costs. In some cases, mostly where imports represent a significant share of domestic supply, the increase in exports had the effect of depressing output. Despite this negative effect, the results of the reported simulations show that a sector-specific (or focused) export-led strategy in South Africa benefits mostly skilled labour-intensive sectors with a possible side effect of increasing inequality and wage dispersion in the labour market. ## 4.2 DSM results The importance of promoting manufactured exports as a means of ensuring sustainable economic growth and labour absorption was highlighted in Section 1. It was also pointed out that promoting the full range of manufactured exports requires a lot of financial and human resources, and all export opportunities do not offer profitable returns. Therefore, the top five manufacturing sectors in which an increase in exports would deliver the highest economic growth and employment growth benefits were identified in Section 4.1. In this section, the new export opportunities (cells 1 to 10 - see Table 2) within these manufacturing sectors, drawn from the results of the DSM, will be presented. The NGP states that South Africa should be focusing on the BRICS countries and regional partners (African countries). This is reiterated in the NDP which recognises that other emerging economies (including the rest of the BRICS grouping) are a valuable source of export opportunities for South Africa. Therefore, for the purposes of this study, the DSM results for the African countries, BRICS countries and so-called next eleven (N-11)⁵ (O'Neill *et al.*, 2005) were considered. Furthermore, only products in which South Africa has a revealed comparative advantage (RCA) equal to or greater than 0.7^6 were considered for this study. This follows Cuyvers *et al.*'s (2012) argument that markets for products in which the exporting country has an RCA ≥ 0.7 can be considered 'actual' ⁶ $$RCAj = \left(\frac{X_{SA,j}}{X_{World,j}}\right) / \left(\frac{X_{SA,tot}}{X_{World,tot}}\right)$$ where $X_{SA,j}$ is South Africa's exports of product j, $X_{SA,tot}$ is South Africa's total exports of all products, $X_{World,j}$ is the world's exports of product j and $X_{World,tot}$ is the total world exports of all products (Balassa, 1965; Krugell & Matthee, 2009:461). ⁵ Bangladesh, Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan, Turkey, South Korea, Vietnam and the Philippines. export opportunities, since the country is already producing and exporting these products to a large extent. Tables 17 to 21 contain the top 10 new export opportunities in each of the top five sectors⁷ identified in Section 4.1. The results focus on African, BRICS and N-11 countries. Table 17 - Top 10 new export opportunities in African, BRICS and N-11 countries for Basic metal products | Country | HS 6-digit product code and description | Filter 4 cell classification | |---------|--|------------------------------| | China | 740311 - Copper cathodes and sections of cathodes unwrought | 10 | | China | 750210 - Nickel unwrought, not alloyed | 5 | | Turkey | 740311 - Copper cathodes and sections of cathodes unwrought | 5 | | China | 721049 - Flat rolled iron or non-alloy steel, coated with zinc, width >600mm, ne | 1 | | China | 720918 - Flat rolled prod/coils>.5mm | 3 | | China | 760200 - Waste or scrap, aluminium | 10 | | Turkey | 720839 - Flat rolled prod/coils>3mm | 5 | | India | 760110 - Aluminium unwrought, not alloyed | 2 | | Turkey | 720838 - Flat rolled prod/coils<3>4. | 5 | | China | 740721 - Bars, rods & profiles of copper-zinc base alloys | 10 | Table 18 - Top 10 new export opportunities in African, BRICS and N-11 countries for Transport equipment | Country | HS 6-digit product code and description | Filter 4 cell classification | |-----------|---|------------------------------| | China | 870323 - Automobiles, spark ignition engine of 1500-3000 cc | 2 | | Brazil | 870323 - Automobiles, spark ignition engine of 1500-3000 cc | 2 | | Ghana | 870323 - Automobiles, spark ignition engine of 1500-3000 cc | 7 | | Indonesia | 870322 - Automobiles, spark ignition engine of 1000-1500 cc | 2 | | Indonesia | 870323 - Automobiles, spark ignition engine of 1500-3000 cc | 2 | | Egypt | 870322 - Automobiles, spark ignition engine of 1000-1500 cc | 2 | | Egypt | 870322 - Automobiles, spark ignition engine of 1000-1500 cc | 2 | | China | 880212 - Helicopters of an unladen weight > 2,000 kg | 5 | | Zimbabwe | 870421 - Diesel powered trucks weighing < 5 tonnes | 2 | | Indonesia | 870410 - Dump trucks designed for off-highway use | 1 | Table 19 - Top 10 new export opportunities in African, BRICS and N-11 countries for Machinery | Country | HS 6-digit product code and description | Filter 4 cell classification | |---------|---|------------------------------| | China | 840734 - Engines, spark-ignition reciprocating, over 1000 cc | 5 | | China | 840690 - Parts of steam and vapour turbines | 4 | | Turkey | 842959 - Earth moving/road making equipment, self-propelled ne | 4 | | China | 842139 - Filtering or purifying machinery for gases nes | 6 | | China | 848310 - Transmission shafts and cranks, cam and crank shafts | 5 | | India | 844790 - Tulle, lace, embroidery, trimmings etc. making machine | 4 | | Brazil | 840999 - Parts for diesel and semi-diesel engines | 7 | | India | 840820 - Engines, diesel, for motor vehicles | 2 | | China | 840999 - Parts for diesel and semi-diesel engines | 7 | | India | 842959 - Earth moving/road making equipment, self-propelled ne | 4 | ⁷ Basic metal products (SIC: 351-352, HS: 72-81); Transport equipment (SIC: 381-387, HS: 86-89); Machinery (SIC: 358-376, HS: 84); Electrical machinery (SIC: 356-357, HS: 85); Chemicals (SIC: 331-336, HS: 28-38). 21 Table 20 - Top 10 new export opportunities in African, BRICS and the N-11 countries for Electrical machinery | Country | HS 6-digit product code and description | Filter 4 cell classification | |-----------|--|------------------------------| | China | 854140
- Photosensitive/photovoltaic/LED semiconductor devices | 1 | | China | 853720 - Electrical control and distribution boards, > 1kV | 6 | | China | 850519 - Permanent magnets & articles intended as magnets, nes | 1 | | China | 850153 - AC motors, multi-phase, of an output > 75 kW | 4 | | China | 851430 - Industrial/laboratory electric furnaces and ovens nes | 3 | | Indonesia | 852510 - Transmission apparatus for radio, telephone and TV | 5 | | Ghana | 852510 - Transmission apparatus for radio, telephone and TV | 10 | | China | 853620 - Automatic circuit breakers for < 1,000 volts | 6 | | India | 852813 - B & W television receive | 5 | | China | 851150 - Generators and alternators | 5 | Table 21 - Top 10 new export opportunities in African, BRICS and N-11 countries for Chemicals | Country | HS 6-digit product code and description | Filter 4 cell classification | |-----------|--|------------------------------| | India | 310530 - Diammonium phosphate, in packs >10 kg | 4 | | China | 291521 - Acetic acid | 1 | | Turkey | 310230 - Ammonium nitrate, including solution, in pack >10 kg | 1 | | Brazil | 310230 - Ammonium nitrate, including solution, in pack >10 kg | 5 | | China | 293040 - Methionine | 4 | | Vietnam | 310530 - Diammonium phosphate, in packs >10 kg | 1 | | China | 321519 - Printing ink, other than black | 1 | | Indonesia | 310520 - Nitrogen-phosphorus-potassium fertilizers, pack >10kg | 5 | | China | 381590 - Reaction initiators, accelerators, catalysts, nes | 9 | | China | 320890 - Polymer based paint, varnish in non-aqueous medium ne | 6 | These results represent the product-country combinations that show the highest potential labour absorption and exports for the sectors within the manufacturing industry. Given that resources to support export expansion programmes are limited, these sectors and their respective product-country combinations were selected by means of CGE modelling and the DSM to offer the most realistic opportunities for export-led growth in the manufacturing employment sector. ## 5. CONCLUSION ## 5.1 Summary The South African economy currently faces a number of challenges. Persistently high unemployment and entrenched poverty are forerunners, with high levels of corruption in both the public and private sectors detracting from the effort to establish South Africa as a reputable trading partner and investment destination. The South African government has produced a number of policy documents (i.e. the New Growth Path, the National Development Plan and the Industrial Policy Action Plan) that seek to address key areas in the economy. Among these key areas, manufacturing is identified as a sector that could play a more prominent role in the economy, especially in terms of its potential to deliver higher export and employment growth. The aim of this paper was two-fold, namely to: i) identify those manufacturing sectors where an increase in exports would lead to the highest growth for the economy and employment, and ii) to identify new priority export opportunities in each of these sectors. ## 5.2 Results The results from the CGE simulations indicate that the top five manufacturing sectors in terms of economic and employment growth potential are: basic metal products, transport equipment, machinery, electrical machinery and chemicals. These results confirm that a sector-specific, exportled strategy will benefit mostly skilled labour-intensive industries, with the possibility of a side effect of inequality and wage dispersion in the labour market. Once these sectors were identified, the DSM was used to identify new export opportunities within the sectors. The results focused on the African, BRICS and N-11 markets. Among these results, China appears to be a market that offers new opportunities across all five selected sectors. ## 5.3 Policy recommendations The results presented in this study reveal export opportunities for cells 1 to 10 (see Table 2). As already mentioned, these cells represent opportunities in which South Africa currently has a very small market share relative to the top six competitors in the market. Successfully pursuing these export opportunities implies aggressive, cost-intensive export promotion strategies. As South Africa has a very low presence in these markets, an offensive marketing strategy would be required to establish a foothold in each market. This suggests that each export opportunity should be actively explored in co-operation with the export promotion organisation's offices abroad. Cuyvers, Viviers, Sithole and Kuhn (2012) recommend the following export promotion strategies for new markets: providing exporters with information on a market's potential, organising high-profile trade missions supported by media campaigns in the target market, match-making with exporters of complementary products, giving incentives for piggy-back export systems, setting up meetings with key-decision makers in the target market (major importers or distributors), facilitating outgoing FDI to the target economy, informing exporters about trade barriers, and organising product-country focused seminars. This paper provides the South African government with a realistic means of reaching some of the employment and export growth goals that form the basis of its national policy objectives. While opportunities abound, translating these opportunities into a more dynamic manufacturing sector that delivers ongoing benefits to the economy will require focused and cost-intensive export promotion strategies that have strong stakeholder input and support. #### **REFERENCES** Adams, P. D. (2005). Interpretation of results from CGE models such as GTAP. *Journal of Policy Modeling*, 27(8), p. 941-959. Balassa, B. (1965). Trade liberalisation and revealed comparative advantage. New Haven, CT: Yale University Economic Growth Center. Bohlmann, H.R. (2012). Reducing illegal immigration to South Africa: A dynamic CGE analysis. Working Papers 274, Economic Research Southern Africa. Bohlmann. H.R. and Van Heerden, J.H. (2005). The Impact of Hosting a Major Sport Event on the South African Economy. Working Papers 200509, University of Pretoria, Department of Economics. Cardozo, R., McLaughlin, K., Harmon, B., Reynolds, P. and Miller, B. (2003). Product-market choices and growth of new businesses. *Journal of Product Innovation Management*, 10(4), p. 331-340. Cuyvers, L., Steenkamp, E.A. and Viviers, W. (2012). The methodology of the Decision Support Model (DSM). in Cuyvers, L. and Viviers, W. (eds). *Export Promotion: A Decision Support Model Approach*. Stellenbosch: Sun Media Metro. Cuyvers, L., Viviers, W., Sithole, W. and Muller, M-L. (2012). Developing strategies for export promotion using a decision support model. in Cuyvers, L. and Viviers, W. (eds). *Export Promotion: A Decision Support Model Approach*. Stellenbosch: Sun Media Metro. Department of Trade and Industry (2012). *Industrial Development*. [Online] Available at: http://www.thedti.gov.za/industrial development/industrial development.jsp [Accessed 12 April 2013]. Department of Trade and Industry (2011). *Industrial Policy Action Plan (IPAP)*. Pretoria: the dti campus, Republic of South Africa. Department of Trade and Industry (2012). *Industrial Policy Action Plan 2012/13-2014/15*. Pretoria: the dti campus, Republic of South Africa. Dervis, K., De Melo, J. and Robinson, S. (1985). General equilibrium models for development policy. Cambridge: Cambridge University Press. Economic Development Department (EDD) (2011). *The New Growth Path: Framework*. [Online] Available at: http://www.economic.gov.za/communications/publications/new-growth-path-series [Accessed 23 January 2014]. Heckscher, E. (1919). The Effect of Foreign Trade on the Distribution of Income. *Ekonomisk Tidskrift*, 2(21), p. 1-32. Helpman, E. and Krugman, P. (1989). Trade Policy and Market Structure. Cambridge: MIT Press. Hirshmann, A. (1964). The paternity of an index. American economic review, 54(5), p.761, Sep. Horridge, M. (2000). ORANI-G: A generic single-country computable general equilibrium model. CoPS working paper OP-93. Centre of Policy Studies, Monash University. Industrial Development Corporation (2012). Sectoral trends: Performance of the primary and secondary sectors of the South African economy - statistical update. Johannesburg: IDC Department of Research and Information. Kemp, T. (1978). Historical Patterns of Industrialization. 1st edition. New York: Longman. Kemp, T. (1989). *Industrialization in the Non-Western World*. 2nd edition. New York: Longman. Kotabe, M. and Czinkota, M.R. (1992). State Government Promotion of Manufacturing Exports: A Gap Ananlysis. *Journal of International Business Studies*, Volume Fourth Quarter, p. 637-658. Kumar, V., Stam, A. and Joachimsthaler, E.A. (1994). An Interactive Multicriteria Approach to Identifying Potential Foreign Markets. *Journal of International Marketing*, 2(1), p. 29-52. National Planning Commission (2011). *National Development Plan 2030: Executive Summary*. Cape Town: The Presidency, Republic of South Africa. Naudé, W.A. and Coetzee, Z.R. (2004). Globalisation and inequality in South Africa: Modelling the labour transmission mechanism. *Journal of Policy Modeling*, 26, p. 911-925. O'Neill, J., Wilson, D., Purushothaman, R. and Stupnytska, A. (2005). How solid are the BRICs? Global Economics Paper No. 134. Goldman Sachs. Ohlin, B. (1933). *Interregional and International Trade*. Cambridge: Harvard University Press. ONDD (2011). Country risk explanation. [Online] Available at: $\underline{http://www.ondd.be/webondd/Website.nsf/weben/Country+risks_Explanations(Visitors)?OpenDocum} \\ \underline{ent}$ [Accessed 23 October 2012]. Papadopoulos, N. and Denis, J. (1988).
Inventory, taxonomy and assessment of methods for international market selection. *International Marketing Review*. Issue Autumn, p. 38-51. SARS (2013). South African Revenue Service: Trade Statistics. [Online] Available at: http://www.sars.gov.za/uploads/documents/83155_RSAFebruary2013.pdf [Accessed 4 April 2013]. Singh, T. (2011). *International Trade and Economic Growth Nexus in Australia: A Robust Evidence from Time-Series Estimators*. Oxford: Blackwell. Statistics South Africa (Stats SA) (2001). *Social Accounting Matrix for South Africa*. Pretoria: Statistics South Africa. Statistics South Africa (Stats SA) (2012). Compendium of industrial statistics. Pretoria: StatsSA. Statistics South Africa (Stats SA) (2013). Economic growth. Available at: http://beta2.statssa.gov.za/?page_id=735&id=1 [Accessed 24 January 2014]. Statistics South Africa (Stats SA) (2014). *Manufacturing: Production and Sales (Preliminary)*. Pretoria: Statistics South Africa. Szirmai, A. (2012). Industrialisation as an engine of growth in developing countries, 1950-2005. *Structural Change and Economic Dynamics*, Issue 23, p. 406-420. Tsen, W. (2009). Terms-of-Trade and Trade Balance: Evidence of Asian Economies. *The International Trade Journal*, XXIII(4), p. 422-457. Van Heerden, J.H., Gerlagh, R., Blignaut, J., Horridge, M., Hess, S., Mabugu, R. and Mabugu, M. (2006). Searching for triple dividends in South Africa: Fighting CO₂ pollution and poverty while promoting growth. *Energy Journal*, 27 (2), p. 113-142. Van Heerden, J.H., Blignaut, J. and Horridge, M. (2008). Integrated water and economic modelling of the impacts of water market instruments on the South African economy. *Ecological Economics*, 66 (1), p. 105-116. Wells, H. and Thirlwall, A. (2003). Testing Kaldor's growth laws across the countries of Africa. *African Development Review*, Issue 15, p. 89-105. Xiong, Z., Zhou, S. and Li, Y. (2012). An Empirical Study on the Relationship between Foreign Trade and Employment in Southwest Minority Region of China. *Advances in Information Sciences and Service Sciences*, 4(8), p. 124-130. ## **APPENDIX** Table A 1 – Observed percentage change to selected exogenous variables (from the base case) | | | All 20 manufacturing sectors in terms of economy-wide benefits |--|------------------------|--|---------|----------|--------------|---------|--------------|--------|--------|-----------------------------------|---------------|--------|---------|----------------------------------|--------------------------------|---|---------------|---------------------------------|--------------------------------|----------------------------| | Selected
macroeconomic
variables | Food
processi
ng | Beverag
es | Tobacco | Textiles | Clothin
g | Leather | Footwea
r | Wood | Paper | Printing
and
publishi
ng | Chemic
als | Rubber | Plastic | Non-
metallic
mineral
s | Basic
metal
product
s | Fabrica
ted
metal
product
s | Machin
ery | Electric
al
machine
ry | Transpo
rt
equipm
ent | Other
manufa
cturing | | Real GDP | -0.004 | -0.003 | -0.003 | 0.013 | 0.014 | 0.005 | 0.001 | 0.016 | 0.022 | 0.003 | 0.075 | 0.004 | 0.008 | 0.009 | 0.138 | 0.023 | 0.076 | 0.033 | 0.096 | 0.012 | | GDP Price
Deflator | 1.811 | 0.138 | 0.014 | 0.014 | 0.017 | 0.014 | 0.013 | 0.002 | 0.023 | 0.069 | 0.006 | 0.345 | 0.012 | 0.007 | 0.016 | 0.257 | 0.027 | 0.082 | 0.049 | 0.126 | | Labour (Total
Employment) | -0.013 | -0.006 | -0.007 | 0.027 | 0.031 | 0.010 | 0.002 | 0.038 | 0.051 | 0.007 | 0.125 | 0.007 | 0.018 | 0.022 | 0.337 | 0.052 | 0.162 | 0.065 | 0.201 | 0.026 | | Average Real
Wage Rate* | 0.000 | | Domestic
Consumption* | 0.000 | | Consumer Price
Index | 0.136 | 0.014 | 0.015 | 0.016 | 0.013 | 0.012 | 0.002 | 0.020 | 0.058 | 0.006 | 0.290 | 0.011 | 0.006 | 0.010 | 0.138 | 0.019 | 0.061 | 0.039 | 0.107 | 0.123 | | Government
Consumption* | 0.000 | | Exports (Volume
Index FOB) | 0.086 | -0.002 | -0.004 | 0.066 | 0.065 | 0.035 | 0.006 | 0.075 | 0.137 | 0.016 | 0.608 | 0.024 | 0.036 | 0.053 | 0.802 | 0.117 | 0.387 | 0.214 | 0.596 | 0.166 | | Export Price
Index | 0.076 | 0.005 | 0.005 | 0.010 | 0.007 | 0.009 | 0.001 | 0.017 | 0.056 | 0.003 | 0.282 | 0.008 | 0.004 | 0.010 | 0.383 | 0.022 | 0.072 | 0.039 | 0.086 | 0.137 | | Imports (Volume
Index CIF) | 0.108 | 0.007 | 0.006 | 0.031 | 0.024 | 0.022 | 0.004 | 0.031 | 0.080 | 0.007 | 0.428 | 0.015 | 0.013 | 0.028 | 0.434 | 0.056 | 0.177 | 0.129 | 0.343 | 0.146 | | Import Price
Index* | 0.000 | | Balance of Trade
(% of GDP) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | | Terms of Trade | 0.076 | 0.005 | 0.005 | 0.010 | 0.007 | 0.009 | 0.001 | 0.017 | 0.056 | 0.003 | 0.282 | 0.008 | 0.004 | 0.010 | 0.383 | 0.022 | 0.072 | 0.039 | 0.086 | 0.137 | | Nominal
Exchange Rate* | 0.000 | | Real Devaluation
(Attractiveness) | -0.137 | -0.014 | -0.014 | -0.017 | -0.014 | -0.013 | -0.002 | -0.023 | -0.069 | -0.006 | -0.344 | -0.012 | -0.007 | -0.016 | -0.256 | -0.027 | -0.081 | -0.049 | -0.126 | -0.155 | [Note: * Exogenous by assumption] [Source: UPGEM simulation results] Table A 2 – All manufacturing sectoral results—percentage change in relation to base | Nominal Nominal Nominal Nominal Nominal Nominal Nominal Nominal Naminal Nami | | | Value | Added | Exp | orts | Imp | orts | Employment | | | |--|----|----------------------------|--------|-------|---------|-------|--------|-----------------|------------|-------|--| | Cold mining -0.902 0.178 -0.912 0.229 2.029 0.000 -1.345 1.440 3 Other mining -0.282 0.286 -1.308 0.330 3.274 0.000 -0.710 1.440 4 Food processing 0.991 1.423 10.000° 1.433 2.544 0.000 1.921 1.440 5 Beverages -0.004 1.408 10.000° 1.347 3.387 0.000 -0.014 1.440 6 Tobacco 0.001 1.408 10.000° 1.464 3.695 0.000 0.004 1.440 7 Textiles 2.387 1.461 10.000° 1.340 3.950 0.000 1.120 1.440 8 Clothing 0.978 1.334 10.000° 1.634 3.950 0.000 1.120 1.440 9 Leather 5.599 1.680 1.000° 1.064 2.585 0.000 8.932 1.440 11 Wood 3.278 1.653 10.000° 1.641 4.301 <th></th> <th>Sectoral % Change</th> <th>Volume</th> <th>Price</th> <th>Volume</th> <th></th> <th>Volume</th> <th>Price
(FCU)*</th> <th>Volume</th> <th></th> | | Sectoral % Change | Volume | Price | Volume | | Volume | Price
(FCU)* | Volume | | | | Other mining | 1 | Agriculture | -0.074 | 0.961 | -3.849 | 0.986 | 2.543 | 0.000 | -0.256 | 1.440 | | | Food processing | 2 | Gold mining | -0.902 | 0.178 | -0.912 | 0.229 | 2.029 | 0.000 | -1.345 | 1.440 | | | Beverages | 3 | Other mining | -0.282 | 0.286 | -1.308 | 0.330 | 3.274 | 0.000 | -0.710 | 1.440 | | | 6 Tobacco 0.001 1.408 10.000* 1.464 3.695 0.000 0.004 1.440 7 Textiles 2.387 1.461 10.000* 1.473 2.643 0.000 2.966 1.440 8 Clothing 0.978
1.334 10.000* 1.340 3.950 0.000 1.120 1.440 9 Leather 5.599 1.680 10.000* 1.698 3.395 0.000 8.932 1.440 10 Footwear -0.455 1.067 10.000* 1.064 2.585 0.000 -0.729 1.440 11 Wood 3.278 1.653 10.000* 1.641 4.301 0.000 4.326 1.440 12 Paper 3.066 2.329 10.000* 2.364 4.034 0.000 6.620 1.440 13 Printing and publishing -0.002 1.496 10.000* 1.448 1.584 0.000 6.761 1.440 14 | 4 | Food processing | 0.991 | 1.423 | 10.000* | 1.433 | 2.544 | 0.000 | 1.921 | 1.440 | | | 7 Textiles 2.387 1.461 10.000* 1.473 2.643 0.000 2.966 1.440 8 Clothing 0.978 1.334 10.000* 1.340 3.950 0.000 1.120 1.440 9 Leather 5.599 1.680 10.000* 1.698 3.395 0.000 8.932 1.440 10 Footwear -0.455 1.067 10.000* 1.664 2.585 0.000 -0.729 1.440 11 Wood 3.278 1.653 10.000* 1.641 4.301 0.000 4.326 1.440 12 Paper 3.066 2.329 10.000* 2.364 4.034 0.000 6.620 1.440 13 Printing and publishing -0.002 1.496 10.000* 2.313 3.415 0.000 6.620 1.440 14 Chemicals 2.615 2.275 10.000* 1.538 3.529 0.000 2.816 1.440 15 | 5 | Beverages | -0.004 | 1.403 | 10.000* | 1.337 | 3.387 | 0.000 | -0.014 | 1.440 | | | Clothing | 6 | Tobacco | 0.001 | 1.408 | 10.000* | 1.464 | 3.695 | 0.000 | 0.004 | 1.440 | | | | 7 | Textiles | 2.387 | 1.461 | 10.000* | 1.473 | 2.643 | 0.000 | 2.966 | 1.440 | | | Footwear | 8 | Clothing | 0.978 | 1.334 | 10.000* | 1.340 | 3.950 | 0.000 | 1.120 | 1.440 | | | 11 Wood 3.278 1.653 10.000* 1.641 4.301 0.000 4.326 1.440 12 Paper 3.066 2.329 10.000* 2.364 4.034 0.000 6.620 1.440 13 Printing and publishing -0.002 1.496 10.000* 1.448 1.584 0.000 -0.004 1.440 14 Chemicals 2.615 2.275 10.000* 2.313 3.415 0.000 6.761 1.440 15 Rubber 1.718 1.901 10.000* 1.903 2.472 0.000 3.520 1.440 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 1.867 1.987 10.000* 3.421 8.621 0.000 14.663 1.440 | 9 | Leather | 5.599 | 1.680 | 10.000* | 1.698 | 3.395 | 0.000 | 8.932 | 1.440 | | | 12 Paper 3.066 2.329 10.000* 2.364 4.034 0.000 6.620 1.440 13 Printing and publishing -0.002 1.496 10.000* 1.448 1.584 0.000 -0.004 1.440 14 Chemicals 2.615 2.275 10.000* 2.313 3.415 0.000 6.761 1.440 15 Rubber 1.718 1.901 10.000* 1.903 2.472 0.000 3.520 1.440 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 1.990 5.115 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1. | 10 | Footwear | -0.455 | 1.067 | 10.000* | 1.064 | 2.585 | 0.000 | -0.729 | 1.440 | | | 13 Printing and publishing -0.002 1.496 10.000* 1.448 1.584 0.000 -0.004 1.440 14 Chemicals 2.615 2.275 10.000* 2.313 3.415 0.000 6.761 1.440 15 Rubber 1.718 1.901 10.000* 1.903 2.472 0.000 3.520 1.440 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 <t< td=""><td>11</td><td>Wood</td><td>3.278</td><td>1.653</td><td>10.000*</td><td>1.641</td><td>4.301</td><td>0.000</td><td>4.326</td><td>1.440</td></t<> | 11 | Wood | 3.278 | 1.653 | 10.000* | 1.641 | 4.301 | 0.000 | 4.326 | 1.440 | | | 14 Chemicals 2.615 2.275 10.000* 2.313 3.415 0.000 6.761 1.440 15 Rubber 1.718 1.901 10.000* 1.903 2.472 0.000 3.520 1.440 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.4 | 12 | Paper | 3.066 | 2.329 | 10.000* | 2.364 | 4.034 | 0.000 | 6.620 | 1.440 | | | 15 Rubber 1.718 1.901 10.000* 1.903 2.472 0.000 3.520 1.440 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 | 13 | Printing and publishing | -0.002 | 1.496 | 10.000* | 1.448 | 1.584 | 0.000 | -0.004 | 1.440 | | | 16 Plastic 2.251 1.597 10.000* 1.538 3.529 0.000 2.816 1.440 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.2 | 14 | Chemicals | 2.615 | 2.275 | 10.000* | 2.313 | 3.415 | 0.000 | 6.761 | 1.440 | | | 17 Non-metallic minerals 0.849 1.598 10.000* 1.611 2.930 0.000 1.685 1.440 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 0 | 15 | Rubber | 1.718 | 1.901 | 10.000* | 1.903 | 2.472 | 0.000 | 3.520 | 1.440 | | | 18 Basic metal products 6.535 3.431 10.000* 3.421 8.621 0.000 14.663 1.440 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.000 | 16 | Plastic | 2.251 | 1.597 | 10.000* | 1.538 | 3.529 | 0.000 | 2.816 | 1.440 | | | 19 Fabricated metal products 1.867 1.987 10.000* 1.990 5.115 0.000 3.046 1.440 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 | 17 | Non-metallic minerals | 0.849 | 1.598 | 10.000* | 1.611 | 2.930 | 0.000 | 1.685 | 1.440 | | | 20 Machinery 4.175 1.968 10.000* 1.983 1.347 0.000 6.210 1.440 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 -2.129 1.440 < | 18 | Basic metal products | 6.535 | 3.431 | 10.000* | 3.421 | 8.621 | 0.000 | 14.663 | 1.440 | | | 21 Electrical machinery 2.524 1.734 10.000* 1.747 1.255 0.000 4.435 1.440 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 -2.129 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 <td< td=""><td>19</td><td>Fabricated metal products</td><td>1.867</td><td>1.987</td><td>10.000*</td><td>1.990</td><td>5.115</td><td>0.000</td><td>3.046</td><td>1.440</td></td<> | 19 | Fabricated metal products | 1.867 | 1.987 | 10.000* | 1.990 | 5.115 | 0.000 | 3.046 | 1.440 | | | 22 Transport equipment 2.541 1.484 10.000* 1.496 2.964 0.000 3.843 1.440 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 0.594 1.440 | 20 | Machinery | 4.175 | 1.968 | 10.000* | 1.983 | 1.347 | 0.000 | 6.210 | 1.440 | | | 23 Other manufacturing 2.292 3.684 10.000* 3.657 5.121 0.000 8.268 1.440 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.065 1.440 <td>21</td> <td>Electrical machinery</td> <td>2.524</td> <td>1.734</td> <td>10.000*</td>
<td>1.747</td> <td>1.255</td> <td>0.000</td> <td>4.435</td> <td>1.440</td> | 21 | Electrical machinery | 2.524 | 1.734 | 10.000* | 1.747 | 1.255 | 0.000 | 4.435 | 1.440 | | | 24 Electricity 0.813 2.370 0.000 0.000 0.000 0.000 2.715 1.440 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.065 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.065 < | 22 | Transport equipment | 2.541 | 1.484 | 10.000* | 1.496 | 2.964 | 0.000 | 3.843 | 1.440 | | | 25 Building 0.038 1.314 0.000 0.000 0.000 0.000 0.059 1.440 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.065 1.440 | 23 | Other manufacturing | 2.292 | 3.684 | 10.000* | 3.657 | 5.121 | 0.000 | 8.268 | 1.440 | | | 26 Civil engineering -0.340 1.290 -5.024 1.297 0.000 0.000 -0.605 1.440 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.065 1.440 | 24 | Electricity | 0.813 | 2.370 | 0.000 | 0.000 | 0.000 | 0.000 | 2.715 | 1.440 | | | 27 Trade 0.833 1.709 -6.575 1.715 0.000 0.000 1.573 1.440 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.005 1.440 | 25 | Building | 0.038 | 1.314 | 0.000 | 0.000 | 0.000 | 0.000 | 0.059 | 1.440 | | | 28 Accommodation and catering -0.522 0.528 -1.786 0.452 0.927 0.000 -2.129 1.440 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.065 1.440 | 26 | Civil engineering | -0.340 | 1.290 | -5.024 | 1.297 | 0.000 | 0.000 | -0.605 | 1.440 | | | 29 Transport 0.703 1.711 -6.562 1.711 2.711 0.000 1.546 1.440 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.005 1.440 | 27 | Trade | 0.833 | 1.709 | -6.575 | 1.715 | 0.000 | 0.000 | 1.573 | 1.440 | | | 30 Communication 0.259 1.579 -6.097 1.585 0.000 0.000 0.594 1.440 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.000 0.065 1.440 | 28 | Accommodation and catering | -0.522 | 0.528 | -1.786 | 0.452 | 0.927 | 0.000 | -2.129 | 1.440 | | | 31 Financial services 0.021 1.460 -5.655 1.466 0.000 0.000 0.005 1.440 | 29 | Transport | 0.703 | 1.711 | -6.562 | 1.711 | 2.711 | 0.000 | 1.546 | 1.440 | | | | 30 | Communication | 0.259 | 1.579 | -6.097 | 1.585 | 0.000 | 0.000 | 0.594 | 1.440 | | | 32 Community services -0.027 1.401 -5.386 1.394 2.852 0.000 -0.032 1.440 | 31 | Financial services | 0.021 | 1.460 | -5.655 | 1.466 | 0.000 | 0.000 | 0.065 | 1.440 | | | | 32 | Community services | -0.027 | 1.401 | -5.386 | 1.394 | 2.852 | 0.000 | -0.032 | 1.440 | | Table A 3 – Basic metal products sectoral results—percentage change in relation to base year | | | Value | Added | Exp | orts | Imp | orts | Employment | | | |----|----------------------------|--------|--------|---------|----------------|--------|-----------------|------------|-----------------|--| | | Sectoral % Change | Volume | Price | Volume | Price
(LCU) | Volume | Price
(FCU)* | Volume | Nominal
Wage | | | 1 | Agriculture | -0.025 | -0.014 | 0.027 | -0.007 | -0.072 | 0.000 | -0.087 | 0.138 | | | 2 | Gold mining | -0.121 | 0.025 | -0.121 | 0.030 | -0.021 | 0.000 | -0.182 | 0.138 | | | 3 | Other mining | -0.014 | 0.116 | -0.469 | 0.118 | 1.549 | 0.000 | -0.035 | 0.138 | | | 4 | Food processing | -0.059 | 0.077 | -0.311 | 0.078 | 0.100 | 0.000 | -0.113 | 0.138 | | | 5 | Beverages | -0.033 | 0.109 | -0.422 | 0.106 | 0.256 | 0.000 | -0.128 | 0.138 | | | 6 | Tobacco | -0.033 | 0.109 | -0.436 | 0.109 | 0.253 | 0.000 | -0.127 | 0.138 | | | 7 | Textiles | -0.232 | 0.116 | -0.467 | 0.117 | -0.005 | 0.000 | -0.288 | 0.138 | | | 8 | Clothing | -0.186 | 0.125 | -0.506 | 0.127 | 0.348 | 0.000 | -0.213 | 0.138 | | | 9 | Leather | -0.309 | 0.085 | -0.351 | 0.088 | -0.010 | 0.000 | -0.487 | 0.138 | | | 10 | Footwear | -0.117 | 0.082 | -0.340 | 0.085 | 0.185 | 0.000 | -0.188 | 0.138 | | | 11 | Wood | -0.192 | 0.110 | -0.448 | 0.112 | 0.169 | 0.000 | -0.252 | 0.138 | | | 12 | Paper | -0.153 | 0.099 | -0.404 | 0.101 | 0.080 | 0.000 | -0.325 | 0.138 | | | 13 | Printing and publishing | -0.053 | 0.119 | -0.486 | 0.122 | 0.139 | 0.000 | -0.086 | 0.138 | | | 14 | Chemicals | -0.107 | 0.095 | -0.381 | 0.095 | 0.146 | 0.000 | -0.273 | 0.138 | | | 15 | Rubber | -0.136 | 0.110 | -0.450 | 0.113 | 0.080 | 0.000 | -0.277 | 0.138 | | | 16 | Plastic | -0.170 | 0.116 | -0.479 | 0.120 | 0.054 | 0.000 | -0.212 | 0.138 | | | 17 | Non-metallic minerals | -0.153 | 0.118 | -0.478 | 0.120 | 0.170 | 0.000 | -0.303 | 0.138 | | | 18 | Basic metal products | 6.174 | 2.217 | 10.000* | 2.200 | 4.597 | 0.000 | 13.829 | 0.138 | | | 19 | Fabricated metal products | -0.092 | 0.497 | -1.946 | 0.492 | 1.564 | 0.000 | -0.149 | 0.138 | | | 20 | Machinery | -0.678 | 0.260 | -1.026 | 0.258 | 0.226 | 0.000 | -0.999 | 0.138 | | | 21 | Electrical machinery | -0.459 | 0.198 | -0.789 | 0.198 | 0.021 | 0.000 | -0.800 | 0.138 | | | 22 | Transport equipment | -0.448 | 0.159 | -0.633 | 0.159 | 0.150 | 0.000 | -0.673 | 0.138 | | | 23 | Other manufacturing | -0.111 | 0.082 | -0.292 | 0.073 | 0.123 | 0.000 | -0.390 | 0.138 | | | 24 | Electricity | 0.504 | 0.800 | 0.000 | 0.000 | 0.000 | 0.000 | 1.678 | 0.138 | | | 25 | Building | 0.010 | 0.178 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.138 | | | 26 | Civil engineering | -0.047 | 0.172 | -0.690 | 0.173 | 0.000 | 0.000 | -0.083 | 0.138 | | | 27 | Trade | 0.112 | 0.182 | -0.736 | 0.185 | 0.000 | 0.000 | 0.211 | 0.138 | | | 28 | Accommodation and catering | -0.056 | 0.055 | -0.195 | 0.049 | 0.113 | 0.000 | -0.232 | 0.138 | | | 29 | Transport | 0.224 | 0.235 | -0.933 | 0.235 | 0.462 | 0.000 | 0.491 | 0.138 | | | 30 | Communication | 0.010 | 0.156 | -0.629 | 0.158 | 0.000 | 0.000 | 0.023 | 0.138 | | | 31 | Financial services | 0.003 | 0.146 | -0.594 | 0.149 | 0.000 | 0.000 | 0.010 | 0.138 | | | 32 | Community services | 0.019 | 0.141 | -0.569 | 0.143 | 0.310 | 0.000 | 0.023 | 0.138 | | Table A 4 – Transport equipment sectoral results—percentage change in relation to base year | | | Value | Added | Exp | orts | Imp | orts | Employment | | | |----|----------------------------|--------|--------|---------|----------------|--------|-----------------|------------|-----------------|--| | | Sectoral % Change | Volume | Price | Volume | Price
(LCU) | Volume | Price
(FCU)* | Volume | Nominal
Wage | | | 1 | Agriculture | -0.016 | -0.001 | -0.013 | 0.003 | -0.026 | 0.000 | -0.057 | 0.107 | | | 2 | Gold mining | -0.063 | 0.011 | -0.063 | 0.016 | -0.015 | 0.000 | -0.096 | 0.107 | | | 3 | Other mining | -0.026 | 0.001 | -0.022 | 0.006 | -0.037 | 0.000 | -0.065 | 0.107 | | | 4 | Food processing | -0.039 | 0.059 | -0.231 | 0.058 | 0.081 | 0.000 | -0.075 | 0.107 | | | 5 | Beverages | -0.014 | 0.079 | -0.279 | 0.070 | 0.174 | 0.000 | -0.052 | 0.107 | | | 6 | Tobacco | -0.013 | 0.080 | -0.313 | 0.078 | 0.188 | 0.000 | -0.051 | 0.107 | | | 7 | Textiles | -0.095 | 0.088 | -0.353 | 0.088 | 0.154 | 0.000 | -0.118 | 0.107 | | | 8 | Clothing | -0.141 | 0.097 | -0.388 | 0.097 | 0.275 | 0.000 | -0.162 | 0.107 | | | 9 | Leather | -0.200 | 0.067 | -0.271 | 0.068 | 0.174 | 0.000 | -0.315 | 0.107 | | | 10 | Footwear | -0.088 | 0.065 | -0.261 | 0.065 | 0.157 | 0.000 | -0.140 | 0.107 | | | 11 | Wood | -0.131 | 0.078 | -0.312 | 0.078 | 0.120 | 0.000 | -0.173 | 0.107 | | | 12 | Paper | -0.075 | 0.078 | -0.312 | 0.078 | 0.126 | 0.000 | -0.160 | 0.107 | | | 13 | Printing and publishing | -0.004 | 0.103 | -0.423 | 0.106 | 0.185 | 0.000 | -0.007 | 0.107 | | | 14 | Chemicals | -0.063 | 0.059 | -0.224 | 0.056 | 0.076 | 0.000 | -0.160 | 0.107 | | | 15 | Rubber | 0.041 | 0.099 | -0.402 | 0.101 | 0.419 | 0.000 | 0.084 | 0.107 | | | 16 | Plastic | 0.057 | 0.093 | -0.371 | 0.093 | 0.266 | 0.000 | 0.071 | 0.107 | | | 17 | Non-metallic minerals | -0.041 | 0.081 | -0.326 | 0.082 | 0.195 | 0.000 | -0.082 | 0.107 | | | 18 | Basic metal products | -0.075 | 0.065 | -0.267 | 0.067 | 0.424 | 0.000 | -0.164 | 0.107 | | | 19 | Fabricated metal products | -0.001 | 0.090 | -0.359 | 0.090 | 0.276 | 0.000 | -0.001 | 0.107 | | | 20 | Machinery | -0.187 | 0.071 | -0.278 | 0.070 | 0.059 | 0.000 | -0.275 | 0.107 | | | 21 | Electrical machinery | -0.079 | 0.059 | -0.236 | 0.059 | 0.106 | 0.000 | -0.138 | 0.107 | | | 22 | Transport equipment | 3.631 | 0.463 | 10.000* | 0.478 | 1.613 | 0.000 | 5.502 | 0.107 | | | 23 | Other manufacturing | -0.058 | 0.037 | -0.153 | 0.038 | 0.072 | 0.000 | -0.206 | 0.107 | | | 24 | Electricity | 0.023 | 0.126 | 0.000 | 0.000 | 0.000 | 0.000 | 0.076 | 0.107 | | | 25 | Building | 0.011 | 0.088 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | 0.107 | | | 26 | Civil engineering | -0.023 | 0.088 | -0.355 | 0.089 | 0.000 | 0.000 | -0.041 | 0.107 | | | 27 | Trade | 0.291 | 0.204 | -0.808 | 0.203 | 0.000 | 0.000 | 0.550 | 0.107 | | | 28 | Accommodation and catering | -0.037 | 0.039 | -0.129 | 0.032 |
0.076 | 0.000 | -0.154 | 0.107 | | | 29 | Transport | 0.041 | 0.127 | -0.511 | 0.128 | 0.174 | 0.000 | 0.089 | 0.107 | | | 30 | Communication | 0.055 | 0.148 | -0.589 | 0.148 | 0.000 | 0.000 | 0.126 | 0.107 | | | 31 | Financial services | 0.019 | 0.132 | -0.528 | 0.132 | 0.000 | 0.000 | 0.057 | 0.107 | | | 32 | Community services | -0.013 | 0.109 | -0.431 | 0.108 | 0.216 | 0.000 | -0.015 | 0.107 | | $Table\ A\ 5-Machinery\ sectoral\ results--percentage\ change\ in\ relation\ to\ base\ year$ | | | Value | Added | Exp | orts | Imp | orts | Employment | | | |----|----------------------------|--------|--------|---------|----------------|--------|-----------------|------------|-----------------|--| | | Sectoral % Change | Volume | Price | Volume | Price
(LCU) | Volume | Price
(FCU)* | Volume | Nominal
Wage | | | 1 | Agriculture | -0.010 | -0.002 | -0.001 | 0.000 | -0.020 | 0.000 | -0.034 | 0.061 | | | 2 | Gold mining | -0.039 | 0.007 | -0.039 | 0.010 | -0.005 | 0.000 | -0.059 | 0.061 | | | 3 | Other mining | -0.015 | 0.003 | -0.020 | 0.005 | 0.002 | 0.000 | -0.039 | 0.061 | | | 4 | Food processing | -0.024 | 0.034 | -0.131 | 0.033 | 0.044 | 0.000 | -0.046 | 0.061 | | | 5 | Beverages | -0.011 | 0.045 | -0.159 | 0.040 | 0.096 | 0.000 | -0.041 | 0.061 | | | 6 | Tobacco | -0.010 | 0.045 | -0.178 | 0.045 | 0.106 | 0.000 | -0.040 | 0.061 | | | 7 | Textiles | -0.088 | 0.050 | -0.192 | 0.048 | 0.010 | 0.000 | -0.110 | 0.061 | | | 8 | Clothing | -0.081 | 0.055 | -0.218 | 0.055 | 0.151 | 0.000 | -0.092 | 0.061 | | | 9 | Leather | -0.134 | 0.038 | -0.151 | 0.038 | 0.000 | 0.000 | -0.211 | 0.061 | | | 10 | Footwear | -0.056 | 0.037 | -0.145 | 0.036 | 0.081 | 0.000 | -0.089 | 0.061 | | | 11 | Wood | -0.075 | 0.046 | -0.184 | 0.046 | 0.075 | 0.000 | -0.099 | 0.061 | | | 12 | Paper | -0.054 | 0.044 | -0.175 | 0.044 | 0.053 | 0.000 | -0.114 | 0.061 | | | 13 | Printing and publishing | -0.014 | 0.057 | -0.232 | 0.058 | 0.085 | 0.000 | -0.023 | 0.061 | | | 14 | Chemicals | -0.034 | 0.037 | -0.142 | 0.036 | 0.062 | 0.000 | -0.087 | 0.061 | | | 15 | Rubber | 0.039 | 0.064 | -0.256 | 0.064 | 0.294 | 0.000 | 0.080 | 0.061 | | | 16 | Plastic | 0.042 | 0.057 | -0.238 | 0.060 | 0.181 | 0.000 | 0.053 | 0.061 | | | 17 | Non-metallic minerals | -0.039 | 0.045 | -0.178 | 0.045 | 0.085 | 0.000 | -0.077 | 0.061 | | | 18 | Basic metal products | 0.039 | 0.072 | -0.289 | 0.072 | 0.810 | 0.000 | 0.086 | 0.061 | | | 19 | Fabricated metal products | 0.177 | 0.092 | -0.329 | 0.082 | 0.469 | 0.000 | 0.288 | 0.061 | | | 20 | Machinery | 4.942 | 0.661 | 10.000* | 0.675 | 0.504 | 0.000 | 7.361 | 0.061 | | | 21 | Electrical machinery | -0.035 | 0.041 | -0.160 | 0.040 | 0.129 | 0.000 | -0.060 | 0.061 | | | 22 | Transport equipment | -0.116 | 0.046 | -0.172 | 0.043 | 0.044 | 0.000 | -0.174 | 0.061 | | | 23 | Other manufacturing | -0.032 | 0.023 | -0.096 | 0.024 | 0.058 | 0.000 | -0.115 | 0.061 | | | 24 | Electricity | 0.027 | 0.092 | 0.000 | 0.000 | 0.000 | 0.000 | 0.091 | 0.061 | | | 25 | Building | 0.004 | 0.054 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.061 | | | 26 | Civil engineering | -0.014 | 0.055 | -0.220 | 0.055 | 0.000 | 0.000 | -0.025 | 0.061 | | | 27 | Trade | 0.088 | 0.094 | -0.376 | 0.094 | 0.000 | 0.000 | 0.165 | 0.061 | | | 28 | Accommodation and catering | -0.022 | 0.022 | -0.071 | 0.018 | 0.038 | 0.000 | -0.091 | 0.061 | | | 29 | Transport | 0.035 | 0.075 | -0.299 | 0.075 | 0.109 | 0.000 | 0.076 | 0.061 | | | 30 | Communication | 0.041 | 0.090 | -0.359 | 0.090 | 0.000 | 0.000 | 0.093 | 0.061 | | | 31 | Financial services | 0.022 | 0.090 | -0.358 | 0.090 | 0.000 | 0.000 | 0.069 | 0.061 | | | 32 | Community services | 0.032 | 0.065 | -0.258 | 0.065 | 0.180 | 0.000 | 0.038 | 0.061 | | Table A 6 – Chemicals sectoral results—percentage change in relation to base year | | | Value Added | | Exp | orts | Imp | orts | Employment | | |----|----------------------------|-------------|-------|---------|----------------|--------|-----------------|------------|-----------------| | | Sectoral % Change | Volume | Price | Volume | Price
(LCU) | Volume | Price
(FCU)* | Volume | Nominal
Wage | | 1 | Agriculture | -0.054 | 0.016 | -0.105 | 0.026 | -0.036 | 0.000 | -0.188 | 0.290 | | 2 | Gold mining | -0.175 | 0.033 | -0.175 | 0.044 | -0.035 | 0.000 | -0.264 | 0.290 | | 3 | Other mining | -0.052 | 0.090 | -0.394 | 0.099 | 1.131 | 0.000 | -0.131 | 0.290 | | 4 | Food processing | -0.092 | 0.158 | -0.610 | 0.153 | 0.239 | 0.000 | -0.177 | 0.290 | | 5 | Beverages | -0.036 | 0.201 | -0.768 | 0.193 | 0.494 | 0.000 | -0.138 | 0.290 | | 6 | Tobacco | -0.035 | 0.202 | -0.833 | 0.209 | 0.528 | 0.000 | -0.134 | 0.290 | | 7 | Textiles | -0.510 | 0.301 | -1.116 | 0.281 | 0.074 | 0.000 | -0.632 | 0.290 | | 8 | Clothing | -0.328 | 0.237 | -0.950 | 0.239 | 0.682 | 0.000 | -0.375 | 0.290 | | 9 | Leather | -0.746 | 0.213 | -0.858 | 0.216 | 0.068 | 0.000 | -1.173 | 0.290 | | 10 | Footwear | -0.243 | 0.192 | -0.773 | 0.194 | 0.481 | 0.000 | -0.390 | 0.290 | | 11 | Wood | -0.434 | 0.206 | -0.830 | 0.209 | 0.204 | 0.000 | -0.570 | 0.290 | | 12 | Paper | -0.283 | 0.211 | -0.828 | 0.208 | 0.209 | 0.000 | -0.602 | 0.290 | | 13 | Printing and publishing | -0.053 | 0.253 | -0.753 | 0.189 | 0.182 | 0.000 | -0.087 | 0.290 | | 14 | Chemicals | 2.569 | 1.330 | 10.000* | 1.376 | 1.834 | 0.000 | 6.639 | 0.290 | | 15 | Rubber | -0.324 | 0.301 | -1.150 | 0.290 | 0.283 | 0.000 | -0.657 | 0.290 | | 16 | Plastic | 0.080 | 0.434 | -1.672 | 0.422 | 1.030 | 0.000 | 0.100 | 0.290 | | 17 | Non-metallic minerals | -0.225 | 0.204 | -0.820 | 0.206 | 0.341 | 0.000 | -0.446 | 0.290 | | 18 | Basic metal products | -0.407 | 0.105 | -0.439 | 0.110 | -0.116 | 0.000 | -0.885 | 0.290 | | 19 | Fabricated metal products | -0.245 | 0.189 | -0.766 | 0.192 | 0.297 | 0.000 | -0.398 | 0.290 | | 20 | Machinery | -0.462 | 0.164 | -0.665 | 0.167 | 0.067 | 0.000 | -0.681 | 0.290 | | 21 | Electrical machinery | -0.344 | 0.167 | -0.674 | 0.169 | 0.031 | 0.000 | -0.599 | 0.290 | | 22 | Transport equipment | -0.433 | 0.164 | -0.655 | 0.165 | 0.163 | 0.000 | -0.651 | 0.290 | | 23 | Other manufacturing | -0.161 | 0.100 | -0.414 | 0.104 | 0.175 | 0.000 | -0.567 | 0.290 | | 24 | Electricity | 0.031 | 0.300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.104 | 0.290 | | 25 | Building | 0.000 | 0.236 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.290 | | 26 | Civil engineering | -0.068 | 0.241 | -0.969 | 0.244 | 0.000 | 0.000 | -0.121 | 0.290 | | 27 | Trade | 0.005 | 0.284 | -1.135 | 0.286 | 0.000 | 0.000 | 0.009 | 0.290 | | 28 | Accommodation and catering | -0.098 | 0.104 | -0.363 | 0.091 | 0.187 | 0.000 | -0.404 | 0.290 | | 29 | Transport | 0.152 | 0.381 | -1.507 | 0.380 | 0.627 | 0.000 | 0.333 | 0.290 | | 30 | Communication | 0.014 | 0.286 | -1.147 | 0.289 | 0.000 | 0.000 | 0.032 | 0.290 | | 31 | Financial services | -0.007 | 0.276 | -1.106 | 0.278 | 0.000 | 0.000 | -0.020 | 0.290 | | 32 | Community services | -0.055 | 0.279 | -1.101 | 0.277 | 0.495 | 0.000 | -0.065 | 0.290 | Table A 7 – Electrical machinery sectoral results—percentage change in relation to base year | | | Value | Added | Exp | orts | Imp | orts | Employment | | | |----|----------------------------|--------|-------|---------|----------------|--------|-----------------|------------|-----------------|--| | | Sectoral % Change | Volume | Price | Volume | Price
(LCU) | Volume | Price
(FCU)* | Volume | Nominal
Wage | | | 1 | Agriculture | -0.005 | 0.003 | -0.016 | 0.004 | -0.001 | 0.000 | -0.018 | 0.039 | | | 2 | Gold mining | -0.023 | 0.004 | -0.023 | 0.006 | -0.003 | 0.000 | -0.034 | 0.039 | | | 3 | Other mining | -0.009 | 0.001 | -0.011 | 0.003 | 0.000 | 0.000 | -0.022 | 0.039 | | | 4 | Food processing | -0.012 | 0.021 | -0.081 | 0.020 | 0.030 | 0.000 | -0.023 | 0.039 | | | 5 | Beverages | -0.004 | 0.028 | -0.104 | 0.026 | 0.067 | 0.000 | -0.016 | 0.039 | | | 6 | Tobacco | -0.004 | 0.028 | -0.115 | 0.029 | 0.074 | 0.000 | -0.016 | 0.039 | | | 7 | Textiles | -0.036 | 0.028 | -0.110 | 0.028 | 0.034 | 0.000 | -0.045 | 0.039 | | | 8 | Clothing | -0.042 | 0.030 | -0.121 | 0.030 | 0.088 | 0.000 | -0.048 | 0.039 | | | 9 | Leather | -0.072 | 0.021 | -0.084 | 0.021 | 0.007 | 0.000 | -0.113 | 0.039 | | | 10 | Footwear | -0.027 | 0.022 | -0.087 | 0.022 | 0.059 | 0.000 | -0.044 | 0.039 | | | 11 | Wood | -0.028 | 0.028 | -0.112 | 0.028 | 0.073 | 0.000 | -0.037 | 0.039 | | | 12 | Paper | -0.021 | 0.026 | -0.102 | 0.026 | 0.047 | 0.000 | -0.044 | 0.039 | | | 13 | Printing and publishing | -0.014 | 0.031 | -0.124 | 0.031 | 0.033 | 0.000 | -0.023 | 0.039 | | | 14 | Chemicals | -0.008 | 0.026 | -0.101 | 0.025 | 0.078 | 0.000 | -0.021 | 0.039 | | | 15 | Rubber | -0.020 | 0.025 | -0.100 | 0.025 | 0.035 | 0.000 | -0.041 | 0.039 | | | 16 | Plastic | 0.124 | 0.041 | -0.164 | 0.041 | 0.237 | 0.000 | 0.155 | 0.039 | | | 17 | Non-metallic minerals | -0.013 | 0.028 | -0.113 | 0.028 | 0.070 | 0.000 | -0.025 | 0.039 | | | 18 | Basic metal products | 0.008 | 0.033 | -0.133 | 0.033 | 0.341 | 0.000 | 0.016 | 0.039 | | | 19 | Fabricated metal products | -0.012 | 0.032 | -0.127 | 0.032 | 0.085 | 0.000 | -0.019 | 0.039 | | | 20 | Machinery | -0.074 | 0.027 | -0.107 | 0.027 | 0.012 | 0.000 | -0.109 | 0.039 | | | 21 | Electrical machinery | 3.157 | 0.616 | 10.000* | 0.625 | 0.599 | 0.000 | 5.556 | 0.039 | | | 22 | Transport equipment | -0.066 | 0.025 | -0.098 | 0.025 | 0.025 | 0.000 | -0.100 | 0.039 | | | 23 | Other manufacturing | -0.019 | 0.014 | -0.057 | 0.014 | 0.044 | 0.000 | -0.066 | 0.039 | | | 24 | Electricity | 0.012 | 0.052 | 0.000 | 0.000 | 0.000 | 0.000 | 0.038 | 0.039 | | | 25 | Building | 0.001 | 0.040 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.039 | | | 26 | Civil engineering | -0.009 | 0.034 | -0.135 | 0.034 | 0.000 | 0.000 | -0.016 | 0.039 | | | 27 | Trade | 0.009 | 0.042 | -0.167 | 0.042 | 0.000 | 0.000 | 0.017 | 0.039 | | | 28 | Accommodation and catering | -0.013 | 0.015 | -0.049 | 0.012 | 0.027 | 0.000 | -0.053 | 0.039 | | | 29 | Transport | 0.018 | 0.043 | -0.173 |
0.043 | 0.064 | 0.000 | 0.039 | 0.039 | | | 30 | Communication | 0.013 | 0.053 | -0.209 | 0.052 | 0.000 | 0.000 | 0.029 | 0.039 | | | 31 | Financial services | 0.004 | 0.044 | -0.174 | 0.044 | 0.000 | 0.000 | 0.012 | 0.039 | | | 32 | Community services | 0.022 | 0.041 | -0.163 | 0.041 | 0.115 | 0.000 | 0.026 | 0.039 | |